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Personalized medicine has become an integral part of health care, and refers to the treatments, 

decisions and interventions that are tailored to the needs of an individual patient. An important 

pillar of personalized medicine is understanding how a patient’s unique characteristics influence 

their response to treatments. These characteristics include traits such as age and gender, but 

also less apparent features such as their genetic profile and anatomy. Acquiring such information 

allows medical practitioners to optimize the impact of existing treatment methods, which 

can consequently lead to a higher quality of life and reduce the number of complications and  

adverse side‑effects [1]. 

In the past decades, personalized medicine has taken a significant leap forward due to 

the availability of novel image-based treatment modalities. One such treatment modality is 

computer‑assisted surgery (CAS) [2, 3]. CAS, also referred to as image‑guided surgery, uses 

spatial information embedded in three‑dimensional (3D) medical images to virtually plan surgical 

interventions, print surgical guides and navigate in the body. Moreover CAS offers the unique 

possibility to practice surgery in a stress-free virtual environment, and to detect potential obstacles 

beforehand, which markedly reduces operating times and costs [4]. 

One of the first studies that focuses on CAS was published in 1990. In this study, Adams et al.[5] 

developed a novel navigation aid for skull-base surgeries. The ground-breaking software solution 

and hardware tool developed in the study allowed surgeons for the first time to virtually plan an 

operation and use the acquired data to safely navigate in specific areas of the skull base. Since then, 

the number of CAS applications has grown exponentially. For example, 3D virtual or printed models 

are currently routinely used to visualize anatomical regions of interest prior to performing surgery 

[6]. In addition, a large number of surgical simulation models (e.g., anthropomorphic phantoms, 

human cadavers, virtual reality systems) have been developed to facilitate the training of novice 

surgeons [7]. Furthermore, over the past decades, computer planned robotic surgery has emerged 

as an increasingly popular technology to facilitate minimally invasive surgeries [8]. As a result, CAS 

has rapidly become indispensable in many medical disciplines.

One of the disciplines that has particularly benefited from CAS is maxillofacial surgery [9]. 

Maxillofacial surgeons often require accurate information on the shape and position of the thin 

bony structures in the skull area in order to correctly plan and execute surgical interventions. 

Currently the most common CAS applications in maxillofacial surgery include oral and facial trauma 

surgery [10], ablative oral/head and neck surgery [11], orthognathic surgery [12], implantology [13] 

and skull surgery[14].

The current maxillofacial CAS workflow can be divided into three main steps: 1) image acquisition, 

2) image processing, and 3) surgical planning (Fig. 1). Image acquisition in the maxillofacial 

CAS workflow is typically performed using computed tomography (CT) and/or cone-beam 

computed tomography (CBCT), as these technologies offer the best hard‑tissue contrast [15]. 

Alternatively, magnetic resonance imaging (MRI) modalities are occasionally employed to visualize 

the surrounding soft tissues. In general, the imaging step consists of two parts: acquisition and 

reconstruction. During the acquisition phase, CT scanners detect x-ray photons that have traveled 

through an object or human body, and MRI scanners measure the relaxation of hydrogen atoms. 

The measured data then need to be reconstructed into interpretable images through a series of 
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mathematical operations. To date, many different reconstruction methods have been developed. 

Choosing the most suitable reconstruction method depends mainly on the imaging modality, 

the scan settings, and the anatomical region of interest. 

After the imaging step, image processing is often required [16]. Currently, the most widely 

performed image processing task is segmentation [17]. Image segmentation refers to the partitioning 

of images into multiple anatomical regions of interest. Although a plethora of anatomical structures 

can be potential targets for this segmentation process, maxillofacial CAS typically focusses on bony 

structures in the in the head area. Another common image processing task is image registration 

[18], which is often used to compare two medical images acquired at different moments in time. This 

is extremely helpful in determining disease progression and in evaluating treatment effectiveness. 

Artifact reduction is also a frequently required image processing task since artifacts can obscure 

and deform relevant tissues and organs in medical images. 

Once the aforementioned image processing steps have been completed, the processed images 

can be used for surgical planning. Surgical planning is a very broad term that encompasses a wide 

variety of different clinical tasks such as creating treatment plans or designing individualized 

implants [19]. In order to virtually plan surgeries segmented medical images are typically converted 

into virtual 3D models that represent the anatomical structure of interest. These virtual 3D models 

allow medical practitioners to evaluate the exact shape and size of the relevant anatomy and to 

subsequently create a treatment plan that is tailored to the individual characteristics of the patient. 

Moreover, such virtual 3D models can be used to design personalized implants or surgical guides 

that fit seamlessly, using dedicated computer-aided design (CAD) software packages. Such 

personalized constructs can be subsequently manufactured using 3D-printing technologies to 

translate the treatment plan and transfer it to the operating room.

Even though CAS is an established method for personalized treatments, each step of the current 

workflow can introduce inaccuracies that can heavily affect the final treatment outcome [20]. For 

example, an ever recurring problem in the image acquisition step is the high amount of noise that is 

often present in medical images [21, 22]. High noise levels are often related to short acquisition times, 

physical limitations of the scanning equipment or the chosen image reconstruction algorithm [21]. 

The resulting low-quality noisy images can impair the subsequent image processing step. The main 

reason for this is that current software packages are unable to deal with such image distortions 

and subsequently require time‑consuming manual interventions. Furthermore, due to the variety 

of shapes and sizes of the bony structures found in the maxillofacial area, it is extremely challenging 

to develop reliable image processing methods. In clinical settings sub-optimal image processing 

Figure 1.  Schematic overview of the maxillofacial computer-assisted surgery workflow.
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can lead to erroneous virtual 3D models which, in turn, can result in ill‑fitting 3D printed drill/saw 

guides and implants [23].

Since small inaccuracies in each of the aforementioned CAS steps can amount to severe 

complications during surgery, experienced medical engineers often need to invest substantial 

time and effort to guarantee the quality of each step in the CAS workflow. This demanding task 

comes with challenges such as fatigue, personal preferences, and subjectivity amongst engineers 

[24]. Moreover, since extensive domain knowledge and manual interactions are often required, 

the reproducibility of the CAS workflow is often not predictable. Therefore, new methods for 

automating the different steps in the CAS workflow are sought.

A promising way of circumventing the challenges faced in the CAS workflow is the use of 

artificial intelligence. Artificial intelligence is a branch of computer science that is concerned 

with automating intelligent behavior [25]. Ever since the term was first coined in 1956, artificial 

intelligence has grown to become an exceptionally wide field of research. The advantage of artificial 

intelligence methods over traditional computer algorithms is that they can learn to find patterns 

in data, without needing explicit rules specified by human experts. Artificial intelligence comprises 

a wide variety of algorithms, with applications including self-driving vehicles [26], face recognition 

[27], and quality control [28]. 

One artificial intelligence algorithm that has revolutionized the field of medicine, is the neural 

network. Similar to the human brain, neural networks consist of many different neurons that are 

structured in layers. Each neuron processes incoming data and propagates the processed data 

to the subsequent layer of neurons through a series of weighted connections. A neural network 

learns how to process the data by extracting patterns and features from the input data. This means 

that neural networks essentially learn to find a mathematical function that relates the input data 

to the desired output. Since neural networks can learn to approximate any mathematical function 

between input data and desired output data (universal approximation theorem [29]), they offer 

the opportunity to perform a wide variety of tasks, including those required in the CAS workflow. 

In order to extract relevant patterns from the input data, neural networks require training. 

To date, neural networks are predominantly trained using supervised training strategies. During 

supervised training, neural networks are provided with a paired dataset of input data and desired 

output data. The input data are propagated through the network and used to predict an output. 

The difference between the predicted output and the desired output is subsequently minimized 

by adjusting the weight of the connections in the neural network. Hence, the weights essentially 

represent the memory of the neural network. Once the weights of the neural network are optimized, 

the network can be applied to perform the learned task on unseen data. 

The first neural network was developed in the 1950s and is commonly known as the multilayer 

perceptron (MLP) (Fig. 2) [30]. The MLP consists of three types of layers: one input layer, one or 

more hidden layers, and one output layer (Fig. 2). The input layer, as the name suggest, receives 

the input data that needs to be processed. The input data are subsequently propagated to the hidden 

layers of the network and processed so that a desired output can be obtained in the output layer. 

The number of hidden layers in the MLP is often referred to as its depth. Applying MLPs with many 
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hidden layers is therefore often called deep learning. Increasing the depth of a network typically 

increases its ability to learn certain patterns, but also increases the time required to learn them. 

Even though MLPs were developed in the 1950s [31], they have only recently gained renewed 

interest due to advances in computing power and the availability of large training datasets. This 

has opened new possibilities to train much larger networks (i.e., more hidden layers and neurons) 

to perform more complex tasks. These developments have inspired researchers to develop a wide 

variety of new neural network types. One such novel network is the recurrent neural network 

(RNN), that consists of neurons that not only propagate data to subsequent layers but can also send 

data back to previous layers of neurons. This allows RNNs to recognize and memorize temporal 

patterns in input data. 

Recently, convolutional neural networks (CNNs) have enjoyed remarkable successes in a wide 

variety of fields [16]. A CNN is similar to an MLP in that it consists of multiple layers that each 

extract information from the input data. However, the main difference between the two networks 

is that CNNs perform convolutional operations instead of regular multiplications, which allows 

them to capture spatial patterns in the input data. As a result, CNNs are exceptionally good at 

detecting patterns in pixel‑based data such as medical images. Moreover, it has been shown that 

the convolutional nature of CNNs allows them to process input data much more efficiently than 

traditional neural networks. As a result, CNNs are generally considered to be the state‑of‑the‑art 

neural network in the field of medical image analysis. 

Since CNNs are capable of capturing spatial patterns in medical images, they are particularly 

well suited to perform the image processing tasks required in the maxillofacial CAS workflow. 

Moreover, as CNNs are self‑learning algorithms, they can be applied to automatically perform image 

processing tasks without the need for expert domain knowledge or human supervision. However, 

relatively few studies have focussed on applying CNNs for maxillofacial CAS. In addition, limited 

knowledge is currently available in clinical settings on how to set up new deep learning projects and 

validate new approaches for clinical workflows. As a consequence, the feasibility of applying CNNs 

for maxillofacial CAS remains largely unknown. 

Figure 2. Schematic representation of an ANN with an input layer (left), three hidden layers (middle) and an 

output layer (right). 
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G E N E R A L  A I M  A N D  O U T L I N E  O F  T H I S  T H E S I S

The aim of thesis is to demonstrate the feasibility of applying CNNs for the image processing 

tasks of the maxillofacial CAS workflow. More specifically, this thesis focuses on developing, 

implementing and validating existing and novel CNN approaches for two main applications: medical 

image segmentation and CT image artifact reduction. This thesis will thus serve as a framework 

for fellow researchers and an incentive to further incorporate CNN approaches in the maxillofacial 

CAS workflow. This would markedly reduce the manual work required by medical engineers, and 

improve the efficiency and reproducibility of treatment planning.

Chapter 2 of this thesis focusses on the application of a relatively simple convolutional neural 

network to CT image segmentation. An explanation is provided of how CNNs are commonly 

structured and it demonstrated that a simple CNN can already be extremely useful in automating 

the segmentation of bony structures. The concept of applying CNNs to CT image segmentation is 

further developed in Chapter 3, where a more advanced CNN was used to simultaneously segment 

two anatomical regions of interest, namely the jaw and the teeth.

The goal of Chapter 4 was to compare different approaches of training CNNs for CBCT image 

segmentation. This chapter describes eight commonly used training strategies and validates 

the resulting segmentation performance of the CNNs. 

Chapters 5 and 6 describe CNNs that were used to process cone-beam CT (CBCT) scans with 

strong imaging artifacts. More specifically, Chapter  5 shows that CNNs can accurately segment 

CBCT scans that were heavily affected by metal artifacts, whereas Chapter 6 describes a novel 

symmetry-aware deep learning workflow to reduce cone‑angle artifacts. 

In Chapter 7 of this thesis, a broader look is taken at deep learning approaches that can be 

potentially beneficial for the CAS workflow. This chapter provides a literature review of the neural 

network approaches that have been applied for three commonly performed tasks of the maxillofacial 

CAS workflow, namely CT image reconstruction, bone segmentation and surgical planning. 

Finally, Chapter 8 reflects on the developments of deep learning methods, specifically CNNs, 

for maxillofacial CAS. Moreover, current challenges and promising research avenues are discussed. 
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A B S T R AC T
Background

The most tedious and time-consuming task in medical additive manufacturing (AM) is image 

segmentation. The aim of the present study was to develop and train a convolutional neural network 

(CNN) for bone segmentation in computed tomography (CT) scans.

Method

The CNN was trained with CT scans acquired using six different scanners. Standard tessellation 

language (STL) models of 20 patients who had previously undergone craniotomy and cranioplasty 

using additively manufactured skull implants served as “gold standard” models during CNN training. 

The CNN segmented all patient CT scans using a leave-2-out scheme. All segmented CT scans were 

converted into STL models and geometrically compared with the gold standard STL models.

Results

The CT scans segmented using the CNN demonstrated a large overlap with the gold standard 

segmentation and resulted in a mean Dice similarity coefficient of 0.92 ± 0.04. The CNN-based STL 

models demonstrated mean surface deviations ranging between −0.19 mm ± 0.86 mm and 1.22 mm 

± 1.75 mm, when compared to the gold standard STL models. No major differences were observed 

between the mean deviations of the CNN-based STL models acquired using six different CT scanners.

Conclusions

The fully-automated CNN was able to accurately segment the skull. CNNs thus offer the opportunity 

of removing the current prohibitive barriers of time and effort during CT image segmentation, 

making patient-specific AM constructs more accessible.
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1 . 	 I N T R O D U C T I O N

Additive manufacturing (AM), also referred to as three-dimensional (3D) printing, is a technique in 

which successive layers of material are deposited on a build bed, allowing the fabrication of objects 

with complex geometries [1,2]. In medicine, additive manufactured tangible models are being 

increasingly used to evaluate complex anatomies [3,4]. Moreover, AM can be used to fabricate 

patient-specific constructs such as drill guides, saw guides, and medical implants. Such constructs 

can markedly reduce operating times and enhance the accuracy of surgical procedures [4]. AM 

constructs have proven to be particularly valuable in the field of oral and maxillofacial surgery due 

to the plethora of complex bony geometries found in the skull area.

The current medical AM process comprises four different steps: 1) image acquisition; 2) image 

processing; 3) computer-aided design; and additive manufacturing (Fig.  1). Image acquisition is 

commonly performed using computed tomography (CT) since it offers the best hard tissue contrast 

[5]. During step 2 of the medical AM process, the acquired CT scan needs to be converted into 

a 3D surface model in the standard tessellation language (STL) file format. This STL model can 

be used to design patient‑specific constructs (step 3) that can subsequently be fabricated using  

a 3D printer (step 4).

The most important step in the CT-to-STL conversion process is image segmentation: 

the partitioning of images into regions of interest that correspond to a specific anatomical structure 

(e.g., “bone”). To date, the most commonly used image segmentation method in medical AM is 

global thresholding [6]. However, global thresholding does not take CT artifacts and noise into 

account, nor the intensity variations between different CT scanners that often result in inconsistent 

segmentation results [7]. Therefore, extensive manual post-processing and anatomical modeling 

is often indispensable. Moreover, due to subjectivity, fatigue, and variance amongst medical 

engineers, the quality of threshold-based image segmentations can differ markedly.

Many alternative (semi-)automatic image segmentation methods such as edge detection, region 

growing, statistical shape models, atlas-based methods, morphological snakes, active contouring, 

and random forests, have been developed over the last decades [6,8]. These automated methods 

are suitable to some extent for segmenting images with intensity inhomogeneities but often fail 

when applied to images acquired using different CT scanners and imaging protocols with varying 

noise levels. The inherent limitations have subsequently dampened the enthusiasm amongst 

physicians with an interest in adapting AM in clinical settings. Therefore, new methods to automate 

image segmentation are sought.

Over the past few years, there have been unparalleled advances in the field of artificial 

intelligence, especially after the ground-breaking performance of the convolutional neural network 

(CNN) developed by Alex Krizhevsky for the ImageNet challenge in 2012 [9]. A CNN is structured 

in layers. Each layer comprises multiple computational building blocks called neurons that share 

weighted connections with neurons in subsequent layers. During training, these layers extract 

features from training images, after which the CNN can recognize these features in new, unseen 

images to perform a certain task, such as segmentation.

The aim of the present study was to develop and train a CNN for skull segmentation in CT scans. 

The CNN was trained using a unique patient dataset that represented variations that are commonly 



C H A P T E R  2

20

2

found in clinical CT scans. This will hopefully help overcome the aforementioned segmentation 

issues in medical AM and reduce the time-consuming and costly role of manual processing.

1.1.	 Related work

Traditionally, (semi-)automatic rule-based methods, such as edge detection [10], region based-

methods [11,12], and level sets [13,14], have been used for medical image segmentation. The main 

strength of such rule-based approaches is their computational efficiency in terms of time and memory. 

Rule-based methods require the construction of generic priors to ensure correct segmentation. 

However, defining such generic priors is often a manual task, which can be cumbersome when 

segmenting images with high noise levels or artifacts. Therefore, data-driven approaches were 

developed. Data-driven approaches do not depend on a fixed set of manually chosen rules but aim 

to extract relevant information from large numbers of medical images. Examples of data-driven 

approaches that have been frequently used for medical image segmentation are random forests 

[15,16], statistical shape models [17–19], and atlas-based approaches [20,21]. Although many of 

these approaches offer more accurate segmentation results than rule-based methods, data-driven 

methods still lack the generalizability to segment medical images of varying shapes, sizes and 

properties [8]. Moreover, data-driven methods often fail when applied to images acquired using 

different CT scanners and imaging protocols.

One way to overcome these limitations is to use deep learning algorithms. Recent advances 

in Graphical Processing Units (GPU) computing have enabled the development of efficient and 

intelligent deep learning approaches [22]. More specifically, convolutional neural networks 

(CNNs) have opened up a wealth of promising opportunities across a number of image-based 

disciplines. For example, Prasoon et al. (2013) successfully employed a CNN for the segmentation 

of knee cartilage in magnetic resonance (MR) images [23]. They demonstrated the potential of 

CNNs and outperformed the then state-of-the-art k-Nearest Neighbor classification method. 

This has motivated many researchers to use CNNs for various medical segmentation tasks, such 

as the segmentation of brain tissue [24–26], prostate [27], bone [28,29], and tumors [30–33] in MR 

images. Furthermore, multiple studies have been conducted on the segmentation of kidneys [34] 

and the pancreas [35–37] in CT scans. A few studies have investigated the use of CNNs for bone 

segmentation in CT scans. For example, Vania et al. (2017) employed a CNN for the segmentation 

of the spine [38]. Moreover, Išgum et al. (2018) proposed an iterative CNN for the segmentation of 

vertebrae that outperformed alternative segmentation methods [39].

2 . 	 N OV E LT I E S

The novelty of the present study is that it demonstrates the feasibility of training a CNN on a patient 

dataset for which a unique, high-quality gold standard was available, namely, STL models created by 

experienced medical engineers. To the best of our knowledge, no studies have been performed in 

which such “engineered” STL models were used as gold standard. Moreover, CT scans were acquired 

using different CT scanners and acquisition protocols in order to represent the variability that is 

commonly found amongst clinical CT datasets.



I M A G E  S E G M E N TAT I O N  U S I N G  A  C O N V O L U T I O N A L  N E U R A L  N E T W O R K

21

2

3 . 	 M AT E R I A L S  A N D  M E T H O D S

This study followed the principles of the Helsinki Declaration and was performed in accordance 

with the guidelines of the Medical Ethics Committee of the VU University Medical Center 

Amsterdam. The Dutch Medical Research Involving Human Subjects Act (WMO) did not apply to this  

study (Ref: 2017.145).

3.1.	 Data acquisition

The CNN was trained using CT scans and STL models of 20 patients who had previously undergone 

craniotomy and cranioplasty using additively manufactured skull implants. The 20 CT scans were 

acquired using different CT scanners and imaging protocols in order to represent the variability 

that is commonly found amongst clinical CT datasets (Table 1). The bony structures in all 20 patient 

CT scans were initially segmented using global thresholding combined with manual corrections, 

i.e., removal of noise, artifacts and unrelated structures, such as the head rest in the CT scan, using 

the available segmentation editing tools in Mimics software (Mimics v20.0, Materialise, Leuven, 

Belgium). Medical engineers subsequently converted the segmented CT scans into STL models and 

imported these STL models into medical computer-aided design 3-matic software (3‑matic  v11.0, 

Materialise, Leuven, Belgium) for post-processing. The post‑processing procedure included 

the removal of unconnected triangles (noise), the closing of unnatural gaps, and the smoothening 

of defect edges in the skull (Fig.  1, step 3). Hence, these post-processed STL models contained 

information that had been directly defined by medical engineers, and therefore served as the gold 

standard in our study.

3.2.	 Data processing: generating gold standard labels

All 20 gold standard STL models were subsequently used to create gold standard labels, namely 

“bone” or “background”. To this end, all STL models had to be aligned with their corresponding CT 

scans (Fig. 1, step 'A'). Each STL model was aligned on a reference model with the same orientation 

as the CT scan using a local best-fit algorithm in GOM Inspect® software (GOM Inspect 2017, GOM 

GmbH, Braunschweig, Germany). The aligned STL models were subsequently converted into gold 

standard labels using the mesh-to-label conversion [40] module in 3D Slicer software (v. 4.6.2)  

(Fig. 1, step ‘B’) [41,42].

3.3.	 Data processing: generating patches

All 20 CT scans were normalized by rescaling the voxel values between 0 and 1 (Fig.  1, step ‘C’). 

Normalization was performed as follows:

� (1)
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gold standard labels using the mesh-to-label conversion [40] module in 3D Slicer 
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where xnorm is the normalized voxel value between 0 and 1, x is the voxel intensity (in 
Hounsfield Units), CTmin is the minimum voxel intensity (in Hounsfield units), and 
CTmax is the maximal voxel intensity (in Hounsfield units) in the CT scan. 
 
The normalized CT scans were used to select voxels from a confined rectangular 
region of interest within each 2D axial CT slice that contained bone (Fig. 2A). These 
voxels were subsequently used to create 33x33 patches centered on each voxel (Fig. 
2B). Thus the created patches contained the intensity values of the surrounding 
voxels. The patches were then used to train the CNN to classify the center voxel of 
each patch as either “bone” or “background” (Fig. 1, step ‘E’).  
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Figure 1. Schematic overview of the study. The current medical additive manufacturing (AM) workflow 

is presented in the top of the figure. CT scans and STL models acquired in this process were used to train 

a convolutional neural network (CNN).

where x
norm

 is the normalized voxel value between 0 and 1, x is the voxel intensity (in Hounsfield 

Units), CT
min

 is the minimum voxel intensity (in Hounsfield units), and CT
max

 is the maximal voxel 

intensity (in Hounsfield units) in the CT scan.

The normalized CT scans were used to select voxels from a confined rectangular region of 

interest within each 2D axial CT slice that contained bone (Fig. 2A). These voxels were subsequently 

used to create 33x33 patches centered on each voxel (Fig. 2B). Thus the created patches contained 

the intensity values of the surrounding voxels. The patches were then used to train the CNN to 

classify the center voxel of each patch as either “bone” or “background” (Fig. 1, step ‘E’). 

Selecting patches from CT scans is a highly data imbalanced problem since bone voxels comprise 

only a small part of the total number of voxels. Training the CNN using the true distribution of 
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bone voxels would cause the CNN to be biased towards classifying background voxels. Therefore, 

a balanced dataset was used to train the CNN, as proposed by Havaei et al. [30]. This means that an 

equal number of “bone” patches and “background” patches were randomly selected from the 20 CT 

scans, which resulted in 1 000 000 patches for each class, hence 2 000 000 patches in total.

3.4.	 CNN architecture

The CNN architecture used in this study (Fig. 3) was initially developed by N. Aldenborgh for 

tumor segmentation in MR images [43]. The authors of the present study substantially adapted 

the aforementioned CNN for bone segmentation in CT images. One of the major differences 

between the current CNN and the CNN developed by Aldenborgh was the number of labels and 

input channels used to feed the CNN. Aldenborgh used 5 labels to segment different anatomical 

structures in MR images of the brain, whereas the modified algorithm implemented in this study 

used 2 labels to segment CT images into “bone” and “background” (air and soft tissues). In addition, 

Aldenborgh used 4 input channels to train their CNN on 4 different MRI sequences, whereas 

we used one input channel. Full details of our CNN architecture and settings can be publicly  

accessed online [44].

Table 1.  Image acquisition parameters of the patients’ CT scans used in this study. 

Patient 

ID Scanner Type

Reconstruction 

Kernel

Voxel size 

(mm)

Slice thickness 

(mm)

Tube voltage 

(kVp)

Tube Current 

(mA)

1 GE Discovery CT750 HD BONEPLUS 0.47 0.625 120 200

2 GE Discovery CT750 HD BONEPLUS 0.543 0.625 120 200

3 GE Discovery CT750 HD BONEPLUS 0.49 1.25 140 626

4 GE Discovery CT750 HD BONEPLUS 0.553 0.625 120 200

5 GE Discovery CT750 HD BONEPLUS 0.504 0.625 120 200

6 Siemens Sensation 64 H31s 0.482 1 120 213

7 Siemens Sensation 64 H70h 0.568 0.75 120 300

8 Siemens Sensation 64 H70h 0.459 0.75 120 300

9 Siemens Sensation 64 H32s 0.4 0.6 120 380

10 Siemens Sensation 64 H60s 0.443 1 120 323

11 Siemens Somatom 

Definition AS+

J30s/3 0.404 1.5 120 80

12 Siemens Somatom 

Definition AS+

J70h/1 0.391 1 120 131

13 Siemens Somatom 

Definition AS+

J30s/3 0.412 1 120 113

14 Siemens Somatom 

Definition AS+

J70h/1 0.342 1 120 115

15 Siemens Somatom Force Hr64h\1 0.432 1 120 184

16 Siemens Somatom Force Hf38s/3 0.45 1 120 164

17 Siemens Somatom Force Hr64h\1 0.39 1 120 166

18 Philips iCT 256 UB 0.513 0.9 120 131

19 Philips iCT 256 D 0.52 0.9 120 131

20 Philips Brilliance 64 UC 0.486 1 120 149
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Figure 2. Patch acquisition from CT slices. Box A illustrates the confined rectangular region of interest enclosing 

all bone voxels in the CT slice, and box B represents the selected patch. 

The CNN architecture used in this study consisted of four blocks, each comprising four layers 

(Fig. 3). The first layer of each block was a convolutional layer (Fig. 3A). Each convolutional layer 

was composed of a set of different kernels. These kernels are essentially structure detectors that 

search for particular geometric shapes in the input images by performing a convolution operation. 

Traditionally, particular kernel shapes are designed by an engineer to perform a certain task. A CNN 

learns which kernel shapes are the most suited to perform the task at hand.

In  order  to  interpret  the  output  of  the  convolutional  layer, additional layers were included 

in the CNN architecture. An activation layer (Fig. 3B), i.e., rectified linear units (ReLU), was applied 

immediately after each convolutional layer to introduce a non-linear property to the CNN. This 

subsequently increased the flexibility of the CNN to detect different anatomical structures [9]. 

The output of the activation layer was normalized for numerical stability using a normalization layer 

(Fig. 3C) [45]. The last layer in each block was the pooling layer (Fig. 3D), which achieved spatial 

invariance in the detected structures [46].

After the four blocks, a final classification layer was used in the CNN architecture. This layer 

quantified the difference between the CNN prediction and the gold standard labels in each 

iteration of the training procedure. After each iteration, the kernels were refined in order to reduce 

the difference in the next iteration. Generally, a CNN is initiated with random kernel structures that 

are refined during training until the performance of the CNN no longer improves. In other words, 

the training of CNNs is characterized by identifying which kernel structures are relevant to solve 

the task at hand.
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3.5.	 Implementation details

The sizes of the convolution kernels were set to 7x7 for the first layer, 5x5 for the second and third 

layers, and 3x3 for the final layer. Max-pooling operations were performed in the pooling layers 

using 2x2 kernels. Moreover, dropout [47] was applied after each convolutional layer with a value of 

0.1. Training was performed using a batch size of 128 patches. In addition, the RMSprop optimizer 

[48] was used to update the kernel weights. In this context, the learning rate (α) and the decay (d) 

were set to α = 0.005 and d = 0.01.

CNN training (Fig. 1, step ‘E’) was performed using a Linux desktop computer (HP Workstation 

Z840) with 64 GB RAM, a Xeon E5-2687 v4 3.0GHZ CPU, and a GTX 1080 Ti GPU card. Implementation 

of the code was performed in Keras [49], a python library that compiles symbolical expressions into 

C/CUDA code that can then run on GPUs. The training of the CNN took approximately 5 min for each 

epoch, while the segmentation of one CT slice took approximately 20 s.

3.6.	 CNN performance testing

The performance of the CNN was evaluated by segmenting CT scans that were not used for training 

purposes (Fig. 1, step ‘F’). To this end, the CNN was trained using a leave-2-out scheme: patches 

were acquired alternately from 18 of the 20 CT scans, after which the CNN was used to segment 

the 2 CT scans that were not used for training. Segmentations of the CT scans were performed by 

classifying each voxel individually. For this purpose, patches (33x33) were generated around each 

voxel in the CT scan. These patches were subsequently forwarded through the trained CNN, which 

resulted in label predictions (i.e., “bone” or “background”) of all voxels.

The quality of the CNN segmentation was evaluated using the Dice similarity coefficient (DSC). 

The definition of the DSC is given in Equation (2), where TP is the number of true positives, FP is 

the number of false positives, and FN is the number of false negatives.

Figure 3. Schematic overview of the CNN architecture. 
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� (2)

The TP, FP, and FN of the CNN segmentations were calculated with respect to the gold standard 

labels. Since these gold standard labels were derived from STL models that were often cropped to 

a specific region of interest and thus did not always cover all bony structures in the original CT scan, 

the TP, FP, and FN values were only calculated within this region of interest.

All 20 CT scans segmented using the CNN were subsequently converted into STL models using 

3D Slicer software (Fig. 1, step “G”). The resulting STL models were geometrically compared with 

the corresponding gold standard STL models using the surface comparison function in GOM 

Inspect® software. This surface comparison was performed on the largest connected component of 

the STL models and computes the perpendicular distance between each polygon point on the gold 

standard STL model and the corresponding CNN-based STL model. Signed deviations between −5.0 

mm and +5.0 mm were measured between the CNN-based STL models and the gold standard STL 

models (Fig. 1, step ‘H’). The mean deviations and standard deviations (SDs) were calculated for all 

CNN-based STL models of the skulls as well as for a manually selected region around the edges of 

each skull defect.

4. 	 R E S U LT S

Figure 4 shows axial CT slices of four patients with a skull defect as well as the corresponding gold 

standard labels created by a medical engineer (“gold standard segmentation”). The labels acquired 

using the trained CNN (“CNN segmentation”) are presented in Figure 4C. Differences between 

the gold standard segmentation and the CNN segmentation are visualized in Figure 4D: correctly 

labeled voxels are marked in gray, false negatives in white, and false positives in black. In addition, 

the DSCs between the gold standard segmentations and the CNN segmentations are presented in 

Table 2. DSCs ranged between 0.86 (patient 7) and 0.97 (patient 12), with a mean DSC of 0.92 ± 0.04.

Figure 5 shows four typical examples of skull STL models acquired using the trained CNN. 

The STL models depicted in Figure 5 A, C, E, and G correspond to patient 7, 9, 15, and 18, respectively. 

The (signed) geometric deviations between these CNN‑based STL models and the gold standard 

STL models are presented using color maps. All CNN-based STL models generally resembled 

the gold standard STL models created by the medical engineer, with mean deviations ranging 

between −0.19 mm ± 0.86 mm (patient 1) and 1.22 mm ± 1.75 mm (patient 7) (Fig. 6). The mean of 

the absolute mean deviations of all CNN-based STL models was 0.44 mm ± 0.36 mm. No differences 

were observed between the mean deviations of the STL models acquired using the six different CT 

scanners included in this study, namely, GE Discovery CT750 HD, Siemens Sensation 64, Siemens 

Somatom Definition AS+, Siemens Somatom Force, Philips iCT 256, and Philips Brilliance 64 (Fig. 6).

Furthermore, the edges of the skull defects in the CNN-based STL models were typically well 

represented with smooth boundaries. In 17 of the CNN-based STL models, the edges of the skull 

defects demonstrated smaller mean deviations than the whole skull (Fig. 7). The mean of the absolute 

mean deviations of all defect edges was 0.27 mm ± 0.29 mm

CNN training (Fig. 1, step ‘E’) was performed using a Linux desktop computer (HP 
Workstation Z840) with 64 GB RAM, a Xeon E5-2687 v4 3.0GHZ CPU, and a GTX 1080 
Ti GPU card. Implementation of the code was performed in Keras [49], a python 
library that compiles symbolical expressions into C/CUDA code that can then run on 
GPUs. The training of the CNN took approximately 5 min for each epoch, while the 
segmentation of one CT slice took approximately 20 s. 
 
3.6. CNN performance testing 
 
The performance of the CNN was evaluated by segmenting CT scans that were not 
used for training purposes (Fig. 1, step ‘F’). To this end, the CNN was trained using a 
leave-2-out scheme: patches were acquired alternately from 18 of the 20 CT scans, 
after which the CNN was used to segment the 2 CT scans that were not used for 
training. Segmentations of the CT scans were performed by classifying each voxel 
individually. For this purpose, patches (33x33) were generated around each voxel in 
the CT scan. These patches were subsequently forwarded through the trained CNN, 
which resulted in label predictions (i.e., “bone” or “background”) of all voxels. 
 
The quality of the CNN segmentation was evaluated using the Dice similarity 
coefficient (DSC). The definition of the DSC is given in Equation (2), where TP is the 
number of true positives, FP is the number of false positives, and FN is the number 
of false negatives. 
 

2
2
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TP FP FN
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      (2) 

The TP, FP, and FN of the CNN segmentations were calculated with respect to the 
gold standard labels. Since these gold standard labels were derived from STL models 
that were often cropped to a specific region of interest and thus did not always cover 
all bony structures in the original CT scan, the TP, FP, and FN values were only 
calculated within this region of interest. 
 
All 20 CT scans segmented using the CNN were subsequently converted into STL 
models using 3D Slicer software (Fig. 1, step ‘G’). The resulting STL models were 
geometrically compared with the corresponding gold standard STL models using the 
surface comparison function in GOM Inspect® software. This surface comparison was 
performed on the largest connected component of the STL models and computes 
the perpendicular distance between each polygon point on the gold standard STL 
model and the corresponding CNN-based STL model. Signed deviations between 
−5.0 mm and +5.0 mm were measured between the CNN-based STL models and the 
gold standard STL models (Fig. 1, step ‘H’). The mean deviations and standard 
deviations (SDs) were calculated for all CNN-based STL models of the skulls as well 
as for a manually selected region around the edges of each skull defect. 
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Figure 4. Example of four axial CT slices of patients with a skull defect (A), the corresponding gold standard 

segmentation (B), the CNN segmentation (C), and the differences between the gold standard segmentation 

and the CNN segmentation (D).  

5 . 	 D I S C U S S I O N

The CT-to-STL conversion currently required in medical AM remains a challenge. This is impeding 

the widespread use of additive manufactured constructs in clinical settings. Therefore, the present 

study aimed to develop and train a CNN for automated CT image segmentation of bone.

The bone segmentation performance of the trained CNN was good (Fig. 4). Differences 

between the gold standard segmentation and the CNN segmentation were generally in the order of 

magnitude of one voxel, which is illustrated in Figure 4D. More specifically, the DSCs varied between 

the different CT scans with a mean DSC of 0.92 ± 0.04 (Table 2). These results are in good agreement 

with those reported by Powell et al. [34] (2017), who used a fully-automated atlas-based approach for 



C H A P T E R  2

28

2

Table 2. Dice similarity coefficient (DSC) between the gold standard segmentation and the CNN segmentation 

of all patient CT scans. 

Patient ID DSC

1 0.96 

2 0.93 

3 0.89 

4 0.95 

5 0.89 

6 0.93 

7 0.86 

8 0.91 

9 0.87 

10 0.94 

11 0.88 

12 0.97 

13 0.90 

14 0.96 

15 0.92 

16 0.93 

17 0.95 

18 0.96 

19 0.97 

20 0.92 

Mean 0.92 ± 0.04

the segmentation of temporal bones and obtained DSCs ranging between 0.58 and 0.91. Moreover, 

the mean DSC found in the present study is comparable to the results reported by Fu et al. [50] (2017) 

who proposed an atlas-based method and achieved a mean DSC of 0.94 ± 0.01 when segmenting 

the mandible. Torosdagli et al. [51] (2017) developed a 3D gradient-based fuzzy connectedness 

method for the segmentation of the mandible and reported a DSC of 0.91. Furthermore, the DSCs 

found in the present study are higher than those reported by Jafarian et al. [14] (2014) and Ghadimi 

et al. [52] (2016), who segmented cranial bones of neonates using a level-set method and achieved 

mean DSCs of 0.87 and 0.81, respectively. It must be noted, however, that the differences between 

the DSCs across studies must be interpreted with caution due to the variances in the datasets used.

All CNN-based STL models generally resembled the gold standard STL models initially created 

by an experienced medical engineer (Fig. 5). Interestingly, the skull CNN‑based STL models resulted 

in an absolute mean deviation of 0.44 mm ± 0.36 mm (Fig. 6), whereas the selected region around 

the defect edges of the skull resulted in a smaller absolute mean deviation of 0.27 mm ± 0.29 mm (Fig. 

7). These differences could have been caused by the medical engineer manually removing all noise 

residuals and smoothening the defect edges of the gold standard STL models to ensure the skull 

implant had a good fit. Since these gold standard STL models were used to generate training data, 

the CNN learned to reproduce these smooth and accurate defect edges in its segmentation.
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Figure 5. Color maps of the signed geometric deviations between four typical CNN-based STL models and 

their corresponding gold standard STL models (A, C, E, and G). Images B, D, F, and H present a more detailed 

visualization of the skull defect edges.
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Figure 7. Mean deviation and standard deviation (SD) of the defect edges of all CNN-based STL models with 

respect to the corresponding gold standard STL models.

Figure 6. Mean deviation and standard deviation (SD) of all CNN-based STL models with respect to 

the corresponding gold standard STL models. 

Another finding in the present study was that 18 of the 20 CNN-based STL models were larger than 

the gold standard STL models (Fig. 6). This phenomenon could be the result of the balanced dataset 

that was used for CNN training containing a higher proportion of bone voxels than the original CT 

scans. This implies that the CNN learned to label more voxels as bone when compared with the gold 

standard (Fig. 4). However, there is currently no general consensus in the literature on the effect of 

the distribution of the training data, namely balanced or unbalanced, on the performance of CNNs 

[53–55]. The optimal data distribution most likely depends on the specific properties and features 

of the dataset. Further work is therefore required to establish the viability of considering the data 

distribution as a tunable hyperparameter that can be optimized for specific datasets. However, this 
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would require many (cross-validated) training sessions and would thus be a time‑consuming and 

computationally expensive procedure.

The mean deviations of the CNN-based STL models in this study ranged between −0.19 mm 

± 0.86 mm and 1.22 mm ± 0.39 mm (Fig. 6). These results differ from those reported by Rueda et 

al. [56] (2006), who calculated a mean geometrical distance of 1.63 mm ± 1.63 mm using a fully-

automated active appearance model for the segmentation of cortical bone in the skull. However, 

the mean deviations found in the present study are comparable with those acquired using a fully-

automatic atlas‑based segmentation method developed by Steger et al. [20] (2012) that resulted in 

a mean deviation of 0.84 mm. The aforementioned findings suggest that CNNs offer comparable 

bone segmentation performance to the fully-automated segmentation methods currently used in 

medical AM.

Another interesting finding was that the six different CT scanners used in this study did not 

seem to have an effect on the mean deviations of the CNN-based STL models (Figs. 6 and 7). This 

indicates that the CNN was able to generalise intensity variations between different CT scanners and 

imaging protocols. In comparison, traditional rule-based segmentation methods, such as global 

thresholding, typically do not generalise well because they are based on a fixed set of features in 

images, e.g., intensities. A major advantage of CNNs is that they can automatically learn which 

characteristic features are relevant to segment bone in multiple CT scans, which allows the CNN to 

segment bone in new, unseen CT scans.

Recent advances in CNN architectures for segmentation have led to the development of fully 

convolutional neural networks (fCNNs) [27,57,58]. fCNNs take input images of varying sizes and 

produce a probability map, rather than a classification output for a single voxel. This allows fCNNs to 

be trained more efficiently compared with CNN architectures for the classification of single voxels 

[57]. However, the major challenge with fCNNs is that they require large numbers of training images 

[59,60]. In medical settings, the amount of data that can be acquired is often limited due to privacy 

regulations and ethical considerations. As a consequence, data augmentation is often necessary 

[60]. Therefore, the authors of the present study implemented a patch-based CNN for classification 

of single voxels as initially proposed by Cireşan et al. [61] (2012). This approach has been shown 

to perform well on multiple image segmentation tasks [62–64]. By extracting a large number of 

patches from multiple CT slices, sufficient input data can be acquired to train a CNN. Although 

patch-based CNNs are computationally less efficient than fCNNs, they are easier to train and are 

more robust to variations within CT slices [65].

A unique feature of the present study is that the gold standard labels that were used to train 

the CNN were obtained from the STL models of patients who had undergone cranioplasty using 

AM skull implants created by a medical engineer. Since all gold standard STL models had been 

successfully used to design patient-specific skull implants, their accuracy can be considered 

sufficient for medical purposes. One limitation of using STL models as a gold standard is the mesh-

to-label conversion algorithm that is required to convert the STL models into gold standard labels. 

The mesh-to-label conversion algorithm implemented in 3D Slicer resulted in a small number of 

bone voxels incorrectly labeled as background. However, since this phenomenon was only observed 
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in thin bony structures (≤1 voxel) that were not situated in the region of interest (the skull defect), it 

can be assumed that it did not affect the segmentation performance of the CNN.

This study presents a framework for fully-automatic CT image seg-mentation of bone using 

a CNN. The trained CNN was able to accurately segment the skull in a large variety of CT scans of 

patients with a skull defect. A CNN could thus help to overcome the limitations of the current image 

segmentation methods commonly used in medical AM, i.e., global thresholding combined with 

extensive and time-consuming manual post-processing. The current implementation of the CNN 

takes approximately 20 s to segment a CT slice, which implies that segmenting a full CT scan would 

take approximately an hour. Nevertheless, since the segmentation process is fully automated, 

the medical engineer can spend this time on other relevant tasks needed to manufacture 

patient-specific skull implants. Automating the image segmentation step would therefore not 

only reduce the subjectivity and the variance amongst medical engineers, it would also improve 

the cost‑effectiveness of patient-specific AM constructs.

Future research should focus on the validation of the CNN using patches from multiple 

orthogonal planes (i.e., axial, sagittal, and coronal). Furthermore, since low‑dose CT and cone-beam 

CT scans can be affected by higher noise levels than conventional CT scans, future studies should 

be undertaken to assess the performance of the CNN on low-dose CT and cone-beam CT scans. 

Moreover, we suggest CNNs are trained and tested for the segmentation of other (bony) structures, 

such as the mandible [66] and vertebrae [39]. In addition, the segmentation performance could be 

further enhanced by exploring alternative CNN architectures, such as the TwoPathCNN [30] and 

the mixed-scale dense CNN [67], which can incorporate global features in CT scans as well as local 

details. Finally, new platforms and infrastructures (e.g., cloud computing) are required that allow 

sharing data, reproducing results, and benchmarking algorithms. This will help researchers to adapt 

to the rapid developments in the field of deep learning.

6. 	 C O N C L U S I O N

This study presents a CNN developed for bone segmentation that was trained using labeled CT 

scans of patients that had been treated using patient-specific additive manufactured skull implants. 

The CNN segmentation demonstrated a high overlap with the gold standard segmentation (DSC 

= 0.92 ± 0.04). The quality of the resulting CNN-based STL models was good (mean deviation = 

0.44 mm ± 0.36 mm), particularly around the defect edges (mean deviation = 0.27 mm ± 0.29 mm). 

CNNs offer the opportunity of removing the prohibitive barriers of time and effort during CT image 

segmentation, making patient-specific AM constructs more affordable, and thus more accessible 

to clinicians. Further research should be undertaken to investigate the bone segmentation 

performance of different CNN architectures.
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A B S T R AC T

Accurate segmentation of the jaw (i.e., mandible and maxilla) and the teeth in cone‑beam 

computed tomography (CBCT) scans is essential for orthodontic diagnosis and treatment planning. 

Although various (semi)automated methods have been proposed to segment the jaw or the teeth, 

there is still a lack of fully automated segmentation methods that can simultaneously segment both 

anatomic structures in CBCT scans (i.e., multiclass segmentation). In this study, we aimed to train 

and validate a mixed-scale dense (MS-D) convolutional neural network for multiclass segmentation 

of the jaw, the teeth, and the background in CBCT scans. Thirty CBCT scans were obtained from 

patients who had undergone orthodontic treatment. Gold standard segmentation labels were 

manually created by 4 dentists. As a benchmark, we also evaluated MS-D networks that segmented 

the jaw or the teeth (i.e., binary segmentation). All segmented CBCT scans were converted to 

virtual 3-dimensional (3D) models. The segmentation performance of all trained MS-D networks 

was assessed by the Dice similarity coefficient and surface deviation. The CBCT scans segmented 

by the MS-D network demonstrated a large overlap with the gold standard segmentations (Dice 

similarity coefficient: 0.934 ± 0.019, jaw; 0.945 ± 0.021, teeth). The MS-D network�based 3D models 

of the jaw and the teeth showed minor surface deviations when compared with the corresponding 

gold standard 3D models (0.390 ± 0.093 mm, jaw; 0.204 ± 0.061 mm, teeth). The MS-D network 

took approximately 25 s to segment 1 CBCT scan, whereas manual segmentation took about 5 h. This 

study showed that multiclass segmentation of jaw and teeth was accurate and its performance was 

comparable to binary segmentation. The MS-D network trained for multiclass segmentation would 

therefore make patient-specific orthodontic treatment more feasible by strongly reducing the time 

required to segment multiple anatomic structures in CBCT scans.
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1 . 	 I N T R O D U C T I O N

Cone‑beam computed tomography (CBCT) is being increasingly used in orthodontics because of 

its low cost and low radiation dose [1]. 3-dimensional (3D) information embedded in CBCT scans 

allows orthodontists to accurately assess complex dental and skeletal malocclusions, which helps to 

substantially improve diagnosis and treatment planning [2, 3]. An essential step in the diagnosis of 

dentofacial abnormalities and deformities is the conversion of CBCT scans into virtual 3D models of 

relevant anatomic regions of interest, such as the mandible, the maxilla, and the teeth. Orthodontic 

changes can be visually and quantitatively assessed by superimposing 3D models of a patient at 

different time points. Moreover, these 3D models can be used to simulate stress distribution in 

alveolar bone via finite element analysis [4].

Currently, the most challenging step in creating 3D models for orthodontics is CBCT image 

segmentation—that is, the partitioning of CBCT scans into various anatomic regions of interest. 

For example, it is laborious to segment the teeth due to the similar intensity of tooth roots and 

their surrounding alveolar bone. In addition, because of high noise levels, limited image resolution, 

and cone beam artifacts [5], it is difficult to accurately segment bony structures—for example, 

the condyle and the ramus. Consequently, bony structures are often erroneously labeled, which 

leads to cavities and gaps when converted into 3D models, subsequently compromising the quality 

of the treatment planning and finite element analysis.

In the last decades, several methods have been proposed to (semi)automatically segment 

various anatomic structures in CBCT scans. Such automatic approaches include edge detection, 

watershed segmentation, region seed growing, clustering methods, morphologic snakes, random 

forests, and statistical shape models [6 – 8]. Although these methods are capable of segmenting 

CBCT scans, accurate segmentation of the mandible, the maxilla, and the teeth remains challenging. 

Therefore, laborious manual correction remains necessary in clinical settings to achieve accurate 

segmentation. Hence, new methods for automatic image segmentation are sought.

Deep convolutional neural networks (CNNs) have recently become increasingly utilized in 

medical image segmentation [9, 10] and have achieved state-of-the-art performances [11 – 13]. 

The success of CNNs can be mainly attributed to their ability of learning nonlinear spatial features in 

input images. Several research groups have used CNNs to segment the mandible or the teeth (i.e., 

binary segmentation) and demonstrated that CNNs were able to perform accurate segmentation 

tasks [14 – 17]. However, no studies have been published in which CNNs were applied to simultaneously 

segment the jaw (i.e., mandible and maxilla) and the teeth in CBCT scans, also known as multiclass 

segmentation. As compared with binary segmentation, multiclass segmentation approaches 

require training only a single network to segment jaw and teeth, thus reducing the overall training 

time. Furthermore, multiclass segmentation does not suffer from conflicting segmentation labels. 

Such conflicting labels are caused when 1 binary segmentation network classifies a pixel as jaw and 

the other classifies it as teeth.

A novel CNN architecture, namely the mixed-scale dense (MS-D) CNN, has recently shown 

promising segmentation performances [18, 19]. This MS-D network allows for accurate and 

automatic segmentation of different bony structures. To reduce the time-consuming and costly 
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manual labor required to create 3D models for patient-specific orthodontic treatment, our aim was 

to train the MS-D network to simultaneously segment the jaw and the teeth in CBCT scans.

2 . 	 M AT E R I A L S  A N D  M E T H O D S

CBCT scan information, CNN architecture, implementation and training details, and CNN 

performance evaluation are provided in the supplemental materials.

2.1.	 Data Acquisition and Preprocessing

Thirty dental CBCT scans were acquired from patients (age, 11 to 24 y; mean ± SD, 14.2 ± 3.4 y; 19 

females and 11 males) who previously underwent orthodontic treatment at the Shanghai Xuhui 

Dental Center. The CBCT scans used in this study were obtained before the orthodontic treatment, 

and none of the patients had fillings, dental implants, or crowns. Thus, the CBCT scans were free of 

metal artifacts. Moreover, no patients had missing teeth, and wisdom teeth were not yet erupted in 

most patients (n = 22). Informed consent was signed by each patient and at least 1 parent. The use 

of patient data was approved by the medical ethics committee of the Shanghai Xuhui Dental Center 

(No. 20193).

Since this study focused on segmenting the jaw and the teeth, we cropped all CBCT scans to 

those anatomic regions, resulting in scans with axial dimensions ranging between 255 to 384. In 

total, 9507 slices were obtained from the 30 CBCT scans.

To acquire gold standard labels, all 30 CBCT scans were segmented into 3 classes: jaw, teeth, and 

background. The manual segmentation was carried out by 4 dentists with at least 2 y of working 

experience in dental clinics. The 4 dentists were well instructed and practiced extensively until 

they could accurately annotate jaw and teeth in CBCT scans. After that, the 30 CBCT scans were 

distributed among the 4 annotators, and each CBCT scan was segmented only once by a single 

annotator. This segmentation was performed with global thresholding, followed by manual 

correction—that is, removing noise, artifacts, and unrelated parts, as well as adding missing thin 

bony structures and filling erroneous cavities in the segmented scans through Mimics 21.0 software 

(Materialise). The resulting segmentation labels were used as the gold standard.

2.2.	 CNN Architecture

In this study, we employed an MS-D network that was developed by Pelt and Sethian [18]. A schematic 

overview of an MS-D network with a depth of 3 and a width of 1 is presented in Figure 1A.

2.3.	 Implementation and Training Details

Three experiments were designed to evaluate the MS-D network’s segmentation performance. 

The first experiment was multiclass segmentation, in which the MS-D network was trained to 

simultaneously segment 3 labels: jaw, teeth, and background. The second and third experiments 

were binary segmentation, where the MS-D network segmented jaw or teeth, respectively.

Twenty-eight CBCT scans were divided into 4 subsets (S1, S2, S3, and S4), each containing 7 

scans. Each experiment followed a 4-fold cross-validation scheme [20], which means that 3 subsets 
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were used for training and 1 for testing. This process was repeated 4 times such that each CBCT scan 

was used for testing exactly once (Fig. 1B). The 2 CBCT scans that were not included in the 4-fold 

cross-validation scheme were used to determine the optimal number of epochs for training.

2.4.	 CNN Performance Evaluation

The segmentation performance of the MS-D network was evaluated with the Dice similarity 

coefficient (DSC; [21]). DSCs were calculated on the patient level, which means that a single DSC was 

calculated for each segmented CBCT volume.

Surface deviations between the MS-D network–based 3D models and the gold standards were 

calculated to evaluate the accuracy of the MS-D segmentation around the edges of bony structures. 

Additionally, mean absolute deviations (MADs) were calculated between the MS-D network–based 

3D models and the gold standards.

After the 4 iterations of the cross-validation scheme, the performance of the MS-D network was 

averaged over the 28 CBCT scans.

Figure 1. MS-D network architecture and 4-fold cross-validation scheme. (A) Schematic representation of an 

MS-D network with 3 convolutional layers and a width of 1; (B) 28 CBCT scans were divided into 4 subsets (S1, S2, 

S3, and S4), each containing 7 CBCT scans. For each iteration, 3 subsets were used for training and 1 for testing. 

CBCT, cone beam computed tomography; MS-D, mixed-scale dense.
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3 . 	 R E S U LT S

The multiclass and binary segmentation approaches achieved similar segmentation accuracies (Fig. 

2A, B). The former approach resulted in DSCs of jaw between 0.901 (patient 3) and 0.968 (patient 

28), with a mean of 0.934 ± 0.019. The DSCs of teeth ranged between 0.881 (patient 2) and 0.971 

(patient 28), with a mean of 0.945 ± 0.021. For the binary segmentation, the DSCs of jaw ranged from 

0.892 (patient 3) to 0.966 (patient 28), with a mean of 0.933 ± 0.020. The DSCs of teeth ranged from 

0.889 (patient 2) to 0.973 (patient 28), with a mean of 0.948 ± 0.021. The lowest DSC of jaw from 

patient 3 was due to the larger excluded region of maxilla in its gold standard while this excluded 

region was segmented by the MS-D (Fig. 2C). The lowest DSC of teeth from patient 2 was attributed 

to the unerupted teeth not being included in the gold standard while the MS-D segmented these 

teeth (Fig. 2D). 

Examples of the multiclass segmentation of the CBCT scan from patient 9 are presented in 

Figure 3. Five axial CBCT slices representing different skull anatomies were selected. The difference 

maps show that the errors mainly occurred at the edges with deviations around 1 pixel (Fig. 3A, B). 

Some thin bony structures around the maxillary sinus were not segmented by the MS-D network as 

compared with the gold standard (Fig. 3E).

Figure 4A shows the surface deviations of all 3D jaw models obtained from the multiclass and 

binary segmentations. Figure 4B illustrates 3 jaw models from the multiclass segmentation. Patient 

28 and 12 corresponded to the minimum and maximum MADs, respectively. Patient 25 had an MAD 

close to the mean MAD. All MAD values of jaw models are presented in Table S1 (supplemental 

material). When analyzing jaw models, the multiclass segmentation resulted in surface deviations 

from −0.191 ± 1.095 mm (patient 14) to 0.185 ± 1.011 mm (patient 3) and a mean MAD of 0.390 ± 0.093 

mm. The binary segmentation resulted in surface deviations from −0.180 ± 1.069 mm (patient 14) to 

0.252 ± 1.058 mm (patient 3) and a mean MAD of 0.410 ± 0.103 mm.

Figure 5A shows the surface deviations of all 3D teeth models obtained from the multiclass and 

binary segmentations. Figure 5B presents 3 teeth models from the multiclass segmentation. Patients 

28 and 23 corresponded to the minimum and maximum MADs, respectively. Patient 14 had an MAD 

close to the mean MAD. All MAD values of teeth models are presented in Table S1 (supplemental 

material). When analyzing teeth models, the multiclass segmentation resulted in surface deviations 

from −0.107 ± 0.546 mm (patient 5) to 0.318 ± 0.347 mm (patient 23) and a mean MAD of 0.204 ± 

0.061 mm. The binary segmentation resulted in surface deviations from −0.116 ± 0.534 mm (patient 

12) to 0.290 ± 0.272 mm (patient 23) and a mean MAD of 0.163 ± 0.051 mm.

4. 	 D I S C U S S I O N

CBCT is increasingly utilized to create virtual 3D models for quantitative evaluation of orthodontic 

changes such as tooth resorption, condyle growth, and movement of the chin and teeth. Creating 

these 3D models requires accurate segmentation of jaw (i.e., mandible and maxilla) and teeth. 

However, manually segmenting these 2 anatomies is time-consuming, laborious, and expensive. In 

this study, we trained a novel MS-D network to simultaneously segment jaw and teeth in CBCT scans 

(i.e., multiclass segmentation). The jaw and teeth segmented by the MS-D network demonstrated 
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Figure 2. Comparison of DSCs obtained using the multiclass and binary segmentation approaches. For jaw 

segmentation (A) and teeth segmentation (B), the multiclass segmentation and the binary segmentation were 

equivalent. In addition, 3D models of the jaw (C) and the teeth (D) are presented, which were acquired by using 

the CBCT scans that resulted in the lowest DSCs. 3D, 3-dimensional; CBCT, cone beam computed tomography; 

DSC, Dice similarity coefficient.

high DSCs, and their 3D models showed minor surface deviations compared with the gold standard. 

The MS-D network took approximately 25 s to segment jaw and teeth in 1 CBCT scan, thus markedly 

reducing the time required for segmentation. Therefore, the MS-D network trained for multiclass 

segmentation has a promising potential to accurately and automatically segment multiple anatomies 

of interest for orthodontic diagnosis and treatment.

Multiclass segmentation has been considered challenging since it faces class data imbalance 

and interclass feature similarity problems [22 - 24]. Compared with multiclass strategies, binary 

strategies are generally more robust and achieve higher accuracy but come at the cost of increased 

training time [25, 26]. In this study, the MS-D network trained for multiclass segmentation was 

able to accurately segment jaw and teeth in CBCT scans, achieving comparable accuracy as binary 
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Figure 3. Example of jaw and teeth segmentation from 5 axial CBCT slices of patient 9 with the multiclass 

segmentation approach. The first column contains 5 axial CBCT slices, which represent different skull 

anatomies. The second and third columns show the gold standard segmentation and the MS-D segmentation, 

respectively. The last column indicates the difference between the gold standard and the MS-D segmentations. 

False negatives of the jaw are marked in fuchsia, and false positives are marked in ultra-pink and gamboge. False 

negatives of the teeth are marked in pink, and false positives are marked in wheat and yellow. CBCT, cone beam 

computed tomography; MS-D, mixed-scale dense.

segmentation. This indicates that the MS-D network can be trained with 3 classes without losing 

segmentation accuracy compared to binary segmentation. Moreover, multiclass segmentation 

has two important advantages over binary segmentation. The first is that multiclass segmentation 

requires training only a single CNN for segmentation of jaw and teeth, which was twice as fast as 

training two CNNs needed for binary segmentation. Specifically, training an MS-D network took 

about 20 h (1 h per epoch), and segmentation of 1 CBCT scan took approximately 25 s. Nevertheless, 
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Figure 4. Surface deviations between the MS-D network–based 3D models of the jaw and the corresponding 

gold standard 3D models. The CBCT scans from patients 15 and 16 were used for validation and therefore not 

included in the analysis. (A) Box and whisker plot of the surface deviations. The boxes represent the interquartile 

range, and the whiskers represent the 10th and 90th percentiles of the surface deviations. (B) The front, back, 

and isotropic views of color maps of surface deviations are presented for 3 jaw models. Patients 28 and 12 

corresponded to the minimum and maximum MADs, respectively. Patient 25 had an MAD close to the mean 

MAD. 3D, 3-dimensional; CBCT, cone beam computed tomography; MAD, mean absolute deviation.

it must be noted that the segmentation time of both the multiclass and the binary segmentation 

approaches is still significantly less than that of manual segmentation, which took around 5 h per 

CBCT scan. The second advantage is that multiclass segmentation does not generate conflicting 

labels, as opposed to binary segmentation. These conflicting labels are caused when 1 binary 

segmentation network classifies a pixel as jaw and the other classifies it as teeth (Figure S1).

The MS-D networks trained in this study resulted in DSCs that are comparable to those presented 

in literature. For mandible segmentation, Qiu et al. [15] obtained a mean DSC of 0.896 by training three 
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Figure 5. Surface deviations between the MS-D network–based 3D models of the teeth and the corresponding 

gold standard models. The CBCT scans from patients 15 and 16 were used for validation and therefore not 

included in the analysis. (A) Box and whisker plot of the surface deviations. The boxes represent the interquartile 

range, and the whiskers represent the 10th and 90th percentiles of the surface deviations. (B) The front, back, 

and isotropic views of color maps of surface deviations are presented for 3 teeth models. Patients 28 and 23 

corresponded to the minimum and maximum MADs, respectively. Patient 14 had an MAD close to the mean 

MAD. 3D, 3-dimensional; CBCT, cone beam computed tomography; MAD, mean absolute deviation; MS-D, 

mixed-scale dense.

CNNs using CBCT slices from axial, sagittal, or coronal planes and then combining the segmentation 

results from all three CNNs. For maxilla segmentation, a lower mean DSC of 0.800 ± 0.029 was 

found by S. Chen et al. [27], who used a learning-based multisource integration framework. For 

teeth segmentation, Lee et al. [17] applied a multiphase strategy to train a U-Net�based architecture, 

which resulted in DSCs ranging from 0.910 to 0.918. Furthermore, Cui et al. [16] employed a 2-stage 

network consisting of a tooth edge map extraction network and a region proposal network and 
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reported a mean DSC of 0.926. In comparison with the aforementioned studies, the MS-D network 

employed in this study achieved comparable DSCs. However, the reviewed studies used different 

data sets to evaluate their methods, which means that differences among the DSCs should be 

interpreted with caution.

All MS-D network–based 3D models closely resembled the corresponding gold standard 3D 

models. The surface deviations found in our study were generally lower than those obtained by 

Wang et al. [28], who developed a random forest method to segment the mandible and the teeth in 

CBCT scans. When segmenting the mandible, their method resulted in a surface deviation of 0.420 ± 

0.150 mm, whereas the segmentation of the upper and lower teeth resulted in surface deviations of 

0.312 ± 0.103 mm and 0.346 ± 0.154 mm, respectively. Our MS-D network segmentation also resulted 

in lower surface deviations of teeth than the multitask fully CNN developed by Y. Chen et al. [29]. 

Their network was trained for individual tooth segmentation, which resulted in an average surface 

deviation of 0.363 ± 0.145 mm.

The segmentation errors of the MS-D network trained in this study mainly occurred at the edges 

of the bony structures (Fig. 3). These segmentation errors are likely due to the partial volume effect. 

This occurs when tissues with different densities are encompassed within the same voxel, which is 

typically the case at the border of 2 anatomic regions (e.g., bone and soft tissue). As a consequence, 

it is extremely hard to exactly define the edge regions of bony structures. This phenomenon 

might also explain why some thin bony structures in the maxillae were not correctly segmented by 

the MS-D network (Fig. 3E). The quality of CBCT scans also affects the accuracy of segmentation. For 

example, the ramus and the condyle were poorly segmented in the CBCT scan of patient 12 (Fig. 4B) 

because these regions were affected by movement artifacts.

One challenge for deep learning in medicine and dentistry is to obtain an accurate gold 

standard [30]. The gold standard is usually created by human annotators, which contains intrinsic 

inter- and intraobserver variability. However, deep learning can learn from large training data sets 

and therefore is able to overcome this variability [31]. In this study, the gold standard segmentation 

labels were annotated by 4 dentists, which introduced subjective variability in the gold standard. For 

example, the unerupted teeth from 1 patient were not included in the gold standard. However, since 

the MS-D network was able to learn from all other segmented CBCT images, the unerupted teeth in 

the CBCT scans were still correctly segmented by the MS-D network. These findings indicate that 

the MS-D network can reduce the influence of subjective variability. If the inaccurate gold standard 

labels are included in the test set, this can affect the evaluation of the network, particularly for small 

data sets. However, since the performance of the MS-D network was evaluated on the 28 CBCT 

scans, the influence of 1 slightly inaccurate gold standard CT scan in the test set on the performance 

metrics is minimal.

In the present study, the MS-D network was adopted to evaluate the multiclass segmentation 

performance. This network was chosen because it has relatively few parameters, making it easier 

to train and apply than other CNNs [18]. The multiclass segmentation performance of the MS-D 

network was compared with that of the U-Net, demonstrating that it was able to achieve similar 

segmentation accuracy as the U-Net [18]. Nevertheless, the MS‑D network is not the only CNN 

architecture capable of performing multiclass segmentation. Several other CNN architectures 
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have been implemented to perform multiclass segmentation of anatomies in brain [22, 24]  

and lung [23, 32].

In this study, all CBCT scans were obtained from patients without dental fillings, implants, or 

orthodontic devices to avoid the influence of metal artifacts. In daily clinical practice, there may be 

such artifacts, so caution should be taken to apply the current findings in clinical practice. Further 

studies should be performed for CBCT image segmentation with complicated dental status.

To facilitate CNN training, the maxilla and mandible were considered a single class, and the upper 

and lower teeth were considered another class. However, one may wish to automatically separate 

the mandible from the maxilla and classify individual teeth during segmentation. The mandible and 

the maxilla can be easily separated by using region growing methods available with most image 

processing software packages, but individual teeth segmentation still requires postprocessing. To 

make the automatic segmentation of individual teeth possible, we aim to include individual labels of 

different teeth during the training of the MS-D network in future work.

5 . 	 C O N C L U S I O N

This study applied a novel MS-D network to segment CBCT scans into jaw, teeth, and background. 

Multiclass segmentation achieved comparable segmentation accuracy as binary segmentation. In 

addition, the MS-D network–based 3D models closely resembled the gold standard 3D models. 

These results demonstrate that deep learning has the potential to accurately and simultaneously 

segment jaw and teeth in CBCT scans. This will substantially reduce the amount of time and effort 

spent in clinical settings, thereby facilitating patient-specific orthodontic treatment.
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S U P P L E M E N TA L  M AT E R I A L 

CBCT scan information

All CBCT scans were acquired using a NewTom VGi scanner, with a tube voltage of 75 kV - 110 kV 

and tube current of 1 mA - 32 mA. All CBCT scans contained axial slices of 512 x 512 voxels with a size  

of 0.3 mm. 

CNN architecture 

In this study we employed a MS-D network that was originally developed by Pelt and Sethian [1]. 

This MS-D network uses dilated convolutional filters to capture relevant patterns at different 

image scales. In addition, all layers of the MS-Dnetwork are densely connected, which means that 

relevant patterns can be directly passed to deeper layers in the network. As a result, the MS-D 

network consists of far fewer trainable parameters than alternative CNN architectures such as 

U-Net or ResNet. This reduces the risk of overfitting on the training data [1], without suffering from 

lower segmentation performances [2]. Moreover, the MS-D network has demonstrated strong 

performance in improving the quality of tomographic data [3]. A schematic overview of an MS-D 

network with a depth of 3 and a width of 1 is presented in Figure 1A. A detailed description of the MS-

Dnetwork can be found in [1]. 

Implementation and training details 

The depth and the dilation factors of the network were adopted from the study by Minnema et 

al. [2]. Specifically, the depth was 100, and the dilation factor was 1 for the first convolutional layer 

and increased by 1 for each subsequent layer. After 10 layers, the dilation factor was reset to 1, and 

the same scheme was applied. The network width was chosen as 1. 

Three different experiments were designed to evaluate the MS-D network’s segmentation 

performance. The first experiment was multi-class segmentation, in which the MS-D network was 

trained to simultaneously segment 3 labels: (1) jaw, (2) teeth, and (3) background. The second and 

third experiments were binary segmentation, where the MS-D network segmented either jaw, or 

teeth, respectively. 

In this study, training the MS-D network was performed following a modified version of the k-fold 

cross-validation scheme. The k-fold cross-validation is typically used to tune the hyper-parameters 

of the network [4]. In the standard procedure, the data sets are split into k folds. The data in k-1 folds 

are used for training and 1 remaining fold is used for validation. This process is repeated until all folds 

are used exactly once as validation set. The hyper-parameters of the network can then be chosen 

based on the highest possible performance on the validation set. The model is subsequently tested 

on an independent hold-out test set. 

However, this typical k-fold cross-validation scheme can lead to unreliable results when 

the hold-out test set consists of few CBCT scans, as it heavily depends on the properties of 

the randomly chosen CBCT scans in the hold-out test set. In order to overcome the limitation of 

available data for testing, we applied a 4-fold cross‑validation scheme on the test set (Fig. 1B), while 

using a hold-out validation set. More specifically, 28 CBCT scans were divided into 4 subsets (S1, S2, 
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S3, and S4), each containing 7 scans. The number of slices was 2226, 2214, 2216, and 2187 in S1, S2, S3, 

and S4 respectively. Each experiment followed a 4-fold cross-validation scheme, which means that 

3 subsets were used for training and 1 subset was used for testing. This process was repeated 4 times 

such that each CBCT scan was used for testing exactly once. Performing a 4-fold cross-validation 

scheme on the test set allowed us to evaluate the segmentation performance of the MS-D network 

on all CBCT scans (28 in total), thus making the evaluation robust to differences between the CBCT 

scans and insensitive to the random choice of test set. 

An independent hold-out validation set was used to determine the optimal number of epochs 

for training. This validation set consisted of 2 CBCT scans which were not included in the 4-fold 

cross-validation scheme. The number of epochs was chosen as 20 for all training iterations, as 

the segmentation performance on the validation set did not improve when trained longer. It should 

be noted that the validation set consisted of relatively few CBCT scans. However, because the MS-D 

network has a low risk of overfitting the training data [1], and only a single hyper-parameter was 

tuned (i.e., number of epochs), 2 CBCT scans were sufficient to reliably determine the number of 

epochs in our study. 

The MS-D network was implemented by Hendriksen [5] and the python code for training the MS-D 

network is publicly available at https://github.com/ahendriksen/msd_pytorch. Implementation 

of the MS-D network was performed using the deep learning platform PyTorch (version 0.3.1) in 

Python (version 3.6.1). Training and testing were performed on 2D axial CBCT slices using a batch 

size of 1 and the default Adam optimizer [6] on a Linux desktop computer (HP Workstation Z840) 

with 64 GB RAM, a Xeon E5-2687 v4 3.0 GHZ CPU and a GTX 1080 Ti GPU card. Each training epoch 

took approximately 1 hour. 

CNN performance evaluation

The segmentation performance of the MS-D network was evaluated using the Dice similarity 

coefficient (DSC) which is a well-known metric in the medical image segmentation domain [7]. 

DSCs were calculated on the patient level, which means that a single DSC was calculated for each 

segmented CBCT volume. 

All segmented CBCT scans (i.e., MS-D network segmentations and gold standard segmentations) 

were also converted into 3D models using 3D Slicer software [8]. Surface deviations between 

the MS-D network-based 3D models and the gold standard 3D models were calculated to evaluate 

the accuracy of the MS-D segmentation around the edges of bony structures. These surface 

deviations were analyzed within the range of -5.0 mm and +5.0 mm using GOM Inspect software 

(GOM Inspect 2018, GOM GmbH, Braunschweig, Germany). Additionally, mean absolute deviations 

(MADs) were calculated between all the MS-D network-based 3D models and the corresponding 

gold standard 3D models. 

After the 4 iterations of the cross-validation scheme, the performance of the MS-Dnetwork was 

averaged over the 28 segmented CBCT scans. All results are presented as means ± standard deviation 

(SD). The data analysis was performed using GraphPad Prism 8 (GraphPad). Equivalence tests were 

performed with a threshold difference of 0.005. If the 90% CIs were within (-0.005, 0.005), the two 

groups were considered to be equivalent with a confidence of 95%. 
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Table S1. Mean absolute surface deviation of jaw and teeth 3D models

Patient ID

Jaw segmentation Teeth segmentation

Multi-class

(mm)

Binary

(mm)

Multi-class

(mm)

Binary

(mm)

P1 0.407 0.403 0.184 0.170

P2 0.443 0.450 0.238 0.211

P3 0.484 0.538 0.230 0.203

P4 0.540 0.527 0.227 0.197

P5 0.364 0.408 0.251 0.208

P6 0.371 0.372 0.132 0.126

P7 0.345 0.340 0.133 0.141

P8 0.438 0.434 0.168 0.132

P9 0.297 0.327 0.152 0.124

P10 0.401 0.432 0.189 0.178

P11 0.369 0.324 0.297 0.149

P12 0.615 0.630 0.258 0.267

P13 0.330 0.345 0.244 0.194

P14 0.524 0.516 0.199 0.197

P15 Validation Validation Validation Validation

P16 Validation Validation Validation Validation

P17 0.375 0.416 0.178 0.136

P18 0.446 0.483 0.159 0.118

P19 0.415 0.454 0.280 0.156

P20 0.308 0.333 0.255 0.179

P21 0.371 0.368 0.110 0.090

P22 0.268 0.265 0.146 0.132

P23 0.469 0.488 0.352 0.321

P24 0.273 0.296 0.168 0.118

P25 0.387 0.434 0.202 0.157

P26 0.370 0.336 0.186 0.160

P27 0.378 0.349 0.291 0.168

P28 0.198 0.244 0.100 0.077

P29 0.490 0.669 0.166 0.134

P30 0.257 0.305 0.206 0.128

min 0.198 0.244 0.100 0.077

max 0.615 0.669 0.352 0.321

Mean ± SD 0.390±0.093 0.410±0.103 0.204±0.061 0.163±0.051
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Figure S1. The conflicting labels induced by the binary segmentation (12 CBCT slices from patient 1). 

The conflicting labels are marked in red. The blue color represents the segmented jaw and the green color 

represents the segmented teeth.
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A B S T R AC T
Background and objective

Over the past decade, convolutional neural networks (CNNs) have revolutionized the field of 

medical image segmentation. Prompted by the developments in computational resources and 

the availability of large datasets, a wide variety of different two-dimensional (2D) and three-

dimensional (3D) CNN training strategies have been proposed. However, a systematic comparison 

of the impact of these strategies on the image segmentation performance is still lacking. Therefore, 

this study aimed to compare eight different CNN training strategies, namely 2D (axial, sagittal and 

coronal slices), 2.5D (3 and 5 adjacent slices), majority voting, randomly oriented 2D cross-sections 

and 3D patches.

Methods

These eight strategies were used to train a U-Net and an MS-D network for the segmentation 

of simulated cone-beam computed tomography (CBCT) images comprising randomly-placed 

non-overlapping cylinders and experimental CBCT images of anthropomorphic phantom heads. 

The resulting segmentation performances were quantitatively compared by calculating Dice 

similarity coefficients. In addition, all segmented and gold standard experimental CBCT images were 

converted into virtual 3D models and compared using orientation-based surface comparisons.

Results

The CNN training strategy that generally resulted in the best performances on both simulated 

and experimental CBCT images was majority voting. When employing 2D training strategies, 

the segmentation performance can be optimized by training on image slices that are perpendicular 

to the predominant orientation of the anatomical structure of interest. Such spatial features should 

be taken into account when choosing or developing novel CNN training strategies for medical 

image segmentation.

Conclusions

The results of this study will help clinicians and engineers to choose the most-suited CNN training 

strategy for CBCT image segmentation.
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1 . 	 I N T R O D U C T I O N

Convolutional neural networks (CNNs) are becoming increasingly popular for a wide range of 

medical image segmentation tasks [1]. The first CNNs developed to segment three-dimensional 

(3D) images acquired using e.g. magnetic resonance imaging (MRI) or computed tomography (CT) 

were trained on two-dimensional (2D) image slices [2]. The majority of these CNNs used axial slices 

as input [3-5] due to the high in-plane resolution with respect to the slice thickness [1]. Recent 

advances in Graphics Processing Unit (GPU) computing and efficient CNN architectures such as 

U-Net [6] led to an increasing number of studies on 3D CNNs [7-9]. However, due to the memory 

constraints of current GPUs, fully 3D CNN approaches remain limited in terms of volume size 

(e.g., 256 × 256 × 256). Therefore, most 3D CNNs are trained using cropped images (e.g., 128 × 128 

× 128) [9] or small patches (e.g., 23 × 23 × 23) [10] that are extracted from the original images. As 

a consequence, global anatomical information is not adequately modeled within the segmentation 

approach. Another disadvantage of 3D CNNs is their large number of trainable parameters [11], 

which makes these networks more prone to overfitting and leads to considerably longer training 

times when compared to 2D CNNs [12].

The aforementioned limitations have sparked a wide range of different CNN training strategies 

to exploit the 3D nature of anatomical features in image segmentation tasks without the need 

to train 3D CNNs. In the present study, we refer to these approaches as augmented 2D training 

strategies. An example of such a training strategy is the “2.5D” approach, in which a small number 

of 2D slices are combined for CNN training purposes. This can be achieved either by combining 

three orthogonal slices (i.e., axial, sagittal and coronal) to classify the voxel at the intersection 

of the three slices [13,14], or by combining three adjacent slices in the same plane [15]. Another 

augmented 2D training strategy is to train separate CNNs for each of the three orthogonal slices 

and combine the predictions of these CNNs using majority voting [16]. This strategy was developed 

to mimic the thought process of radiologists, who typically first analyze multiple 2D image slices 

from different orthogonal planes and then combine them to interpret the shape and size of 

the anatomical structure of interest [17].

To date, there has been little agreement in the literature [7,13,18-23] on which CNN training 

strategy is the best for 3D medical image segmentation. In addition, it remains unclear how 

the segmentation performance of different strategies is influenced by the spatial characteristics of 

the anatomical structure of interest. Therefore, the aim of this study was to compare different 2D, 

augmented 2D and 3D training strategies for the segmentation of CBCT images containing structures 

with diverse spatial orientations. Segmentation of bony structures in CBCT images is often required 

for diagnostic purposes [24], virtual treatment planning [25], personalized implant design [26] 

and post-operative analysis [27]. However, this task is notoriously difficult since CBCT images are 

typically affected by high noise levels, directionally dependent imaging artifacts and partial volume 

effects [28]. Although previous studies have experimented with using CNNs to automate CBCT 

image segmentation [29,30], it remains unclear which training strategy is best suited for this task.
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The contributions of this study are as follows:

1.	 This study is the first to provide a comprehensive and quantitative comparison between 

different 2D, augmented 2D and 3D CNN training strategies for CBCT image segmentation.

2.	 All CNN training strategies were evaluated using simulated CBCT images with a known 

ground truth, as well as real CBCT images of physical anthropomorphic phantom heads for 

which high-quality gold standard segmentation labels were acquired using an industrial 

micro-CT scanner.

3.	 In addition to calculating Dice similarity coefficients commonly used in the field, we propose 

a novel metric to quantify segmentation performance by converting the segmented images 

into virtual 3D surface models and performing orientation-based surface comparisons.

4.	 This study demonstrates that majority voting can improve a CNN’s segmentation 

performance compared to conventional 2D and 3D CNN training strategies.

2 . 	 M AT E R I A L S  A N D  M E T H O D S

The performance of 2D, augmented 2D and 3D CNN training strategies was quantitatively compared 

using both simulated CBCT images and experimental CBCT images. The simulation of CBCT images 

offered the unique possibility to create images with a known ground truth in which the spatial 

orientation of the inner structures could be precisely controlled. The experimental CBCT images 

were obtained by imaging five anthropomorphic phantom heads that were also scanned using an 

industrial micro-CT scanner. This allowed us to create highly accurate gold standard segmentation 

labels, which are indispensable for a fair comparison between training strategies.

2.1.	 CBCT simulations

A simulation phantom was generated by removing 10,500 randomly-placed non-overlapping 

cylinders from a large homogeneous cylinder with a value of one. The large cylinder had a height 

of 300 mm and a radius of 100 mm. The height of the smaller cylinders ranged from 7 to 12 mm 

and their radius ranged from 1.4 to 2.4 mm. Three different types of this simulation phantom were 

generated (Fig. 1) by varying the orientation of the smaller cylinders in the XZ-plane as follows: (1) 

fixed orientation of the smaller cylinders parallel to the Z-axis; (2) randomly rotating the smaller 

cylinders independently between -20 and 20°; and (3) randomly rotating the smaller cylinders 

independently between -90 and 90°. For each of these three phantom types, ten different simulation 

phantoms were created. The code to construct the phantoms was adapted from a recent study  

by Hendriksen et al. [31,32].

All 30 simulation phantoms were subsequently used to simulate CBCT projections using 

the Astra Toolbox [33,34] (v. 1.8) that provides high‑performance GPU implementations for 

tomographic operations with flexible geometries. In order to remain as close as possible to clinical 

practice, a limited-data CBCT geometry was simulated by calculating 180 projections with an 

angular increment of 2° for each simulation phantom. These simulated projections were used to 

reconstruct CBCT images using the Feldkamp Davis and Kress (FDK) algorithm [35]. The dimensions 

of the reconstructed CBCT images were set to 512 × 512 × 512. Finally, Gaussian noise (μ = 0 and σ = 0.2) 

was added to all reconstructed CBCT images.
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2.2.	 Experimental CBCT data

CBCT images of five anthropomorphic phantom heads were acquired in this study. Four of these 

heads contained real human bone (The Phantom Laboratory, Salem, NY, USA; Erler-Zimmer GmbH 

& Co.KG, Lauf, Germany), and one contained acrylic bony structures (CIRS Inc., Norfolk, VA, USA). 

Such anthropomorphic phantom heads are commonly used by CBCT device manufacturers to 

evaluate their scanners for clinical use, and are specifically designed to mimic the tissue densities 

and morphologies of real human heads. As a result, these phantom heads cause realistic imaging 

artifacts without the need of exposing patients to harmful X-ray radiation.

All phantom heads were scanned using a Planmeca ProMax Mid CBCT scanner (Planmeca Oy., 

Helsinki, Finland) that is widely used in dentistry and maxillofacial surgery. All scans were performed 

using a tube voltage of 90 kVp, a tube current of 10 mA and an isotropic voxel size of 0.2 mm 

using two non-overlapping imaging protocols. The first imaging protocol covered the top part of 

the phantom heads and the second imaging protocol covered the bottom part of the phantom 

heads (Fig. 2), resulting in a total of ten CBCT images with dimensions between 1001 × 1001 × 153 and 

1001 × 1001 × 380. Since the acquisition of annotated medical imaging data is a common challenge 

in training deep learning algorithms, we believe that the relative small size of the datasets used in 

the present study (10 CBCT scans per dataset) is representative for the datasets that can be typically 

obtained in clinical settings.

Figure 1. Schematic representation of the three different simulation phantoms used in this study (top) 

and magnified examples (4x) of the central slices of the resulting CBCT images (input and gold standard 

segmentation labels).
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In order to create gold standard segmentation labels, all five phantom heads were also scanned 

using an industrial GE phoenix v|tome|x m cone-beam micro-CT scanner (GE Sensing & Inspection 

Technologies GmbH, Wunstorff, Germany) using a tube voltage of 100 kVp, a tube current of 1.2 mA 

and 250 ms exposure time. All micro-CT images were reconstructed with an isotropic voxel size of 

0.12 mm. Since the voxel sizes of the micro-CT images were smaller than those of the CBCT images, 

the voxels of the micro-CT images were rescaled to 0.2 mm. The high radiation dose and long 

scanning times (roughly 2 h per phantom head) resulted in micro-CT images with a superior signal-

to-noise ratio (SNR) when compared to the CBCT images, which enabled accurate segmentation 

of the bony structures. Segmentation of all five micro-CT images was performed using global 

thresholding, followed by manual post-processing using the open-source 3D slicer software 

package [36,37]. The segmented micro-CT images were subsequently aligned on the CBCT images 

and cropped to the same dimensions. The aligned micro-CT segmentation labels served as gold 

standard segmentation labels (Fig. 2).

2.3.	 Training strategies

Eight different CNN training strategies were evaluated (Fig. 3). The first three training strategies 

were traditional 2D approaches in which axial, sagittal and coronal CBCT slices were used to train 

a 2D CNN (Fig. 3a–c).

In addition, three augmented 2D training strategies were evaluated. First, we implemented 

a 2.5D approach proposed by Ben-Cohen et al. [15] in which a 2D CNN was trained using input 

images consisting of 3 or 5 channels: one axial slice of interest and either two or four adjacent 

slices above and below this axial slice (Fig. 3d and e). Second, we evaluated a majority voting (MV) 

Figure 2. Example of one anthropomorphic phantom head with the corresponding input CBCT slices and gold 

standard segmentation labels.
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scheme proposed by Zhou et al. [16,17] (Fig. 3f). In this scheme, separate 2D CNNs were trained 

for each of the three orthogonal slices, after which a voxel was labeled as foreground if at least 

two of the three trained CNNs also labeled that voxel as foreground. Third, we developed a novel 

augmented 2D training strategy in which a 2D CNN was trained using randomly oriented 2D cross-

sections of CBCT images (Fig. 3g). In order to compare this cross‑section strategy with the 2D 

axial strategy, we acquired the same number of randomly oriented cross-sections from each CBCT 

image as the original number of axial slices. The cross-sections were equally spread over the Z-axis 

of the CBCT image and the orientation of each cross-section was randomly and independently 

sampled with an angle of at most 10° with respect to the axial plane. We refer to this novel approach 

as the randomly oriented 2D cross-sections strategy. 

Finally, we evaluated a fully 3D training strategy (Fig. 3h). Existing 3D CNN approaches typically 

use cropped [38] or downsampled [7] 3D images due to GPU memory constraints. However, 

cropping leads to a loss of global information, whereas downsampling results in lower spatial 

resolution and thus a loss of fine details in the images. Therefore, the most popular 3D CNN training 

strategies use multiple 3D patches extracted from the original images [11,39]. In the present study, 

we implemented a 3D patch-based training strategy that allowed us to use all voxels of the CBCT 

image when training the CNN without reducing the image resolution. All CBCT images were padded 

with reflective boundaries to ensure that image dimensions were a multiple of the patch size. 

Partially overlapping 3D patches of 128 × 128 × 128 voxels were extracted from the padded CBCT 

images with a stride of 64 voxels, resulting in 343 3D patches acquired from each simulated CBCT 

Figure 3. Schematic overview of the eight CNN training strategies evaluated in the present study.
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image and between 675 and 1125 3D patches acquired from each experimental CBCT image. Thus, 

a large number of training instances (i.e., 2D slices or 3D patches) were extracted for all training 

strategies, ensuring convergence of the CNN during the training process.

2.4.	 CNN architecture

In order to compare the effectiveness of the aforementioned training strategies, CNN architectures 

were required that (1) can be broadly applied for many different medical image segmentation tasks 

and (2) are robust and easy to train on a small number of CBCT images. In order to comply with (1), we 

employed the commonly used U-net architecture that has been used for a wide variety of medical 

image segmentation tasks [40 – 42]. However, since U-net consists of a relatively large number 

of trainable parameters, it tends to overfit when few training images are available. Therefore, to 

comply with criterion (2), we also used the mixed-scale dense convolutional neural network (MS-D 

network) initially developed by Pelt and Sethian [43]. The MS-D network uses dense connections 

to directly pass relevant feature maps to deeper layers of the network. As a result, fewer trainable 

parameters are necessary compared to U-Net [29], thereby reducing the risk of overfitting and 

making the MS-D network particularly suited to process small imaging datasets.

The U-Net and the MS-D network were implemented in Python (v. 3.7.4) using the deep 

learning framework PyTorch (v. 1.1.0) and are both publicly accessible online [44,45]. The U-Net 

used in the present study was comparable to the one described by Ronneberger et al., [6] except 

that we used batch normalization [46] after each Rectified Linear Units (ReLU) activation function 

and applied reflection padding on input images of which the dimensions were not divisible by 16. 

The MS-D network was the same as the one proposed by Pelt and Sethian [43], with a depth of 50 

convolutional layers and a width of 1.

In order to ensure a fair comparison between the different CNN training strategies, both CNN 

architectures (i.e., U-Net and MS-D network) were trained using the default Adam optimizer [47] 

(i.e., learning rate = 0.001, ε=1x10-8) with a batch size of 1 on a server with 192 GB RAM and one 

NVidia GeForce GTX 1080 Ti GPU. Both CNNs were trained for 10 epochs on the experimental CBCT 

images and for 50 epochs on the simulated CBCT images. In order to avoid overfitting, a relatively 

small number of epochs (i.e., 10) was used to train the CNNs on the experimental data. The chosen 

number of epochs was based on the results of a previous study [29], in which we found that training 

the networks for 10 epochs already was sufficient to achieve satisfactory performances in image 

segmentation tasks. Training of the CNNs on the simulated datasets was performed for 50 epochs. 

The reason for this was that the risk of overfitting on the simulated dataset was substantially 

smaller, since this dataset consisted of manually created CBCT scans that shared many similar image 

properties and features compared to CBCT scans of the experimental dataset (e.g., same intensity 

values, same range of cylinder sizes).

2.5.	 Evaluation

All eight training strategies were evaluated on each of the four different datasets, i.e., the three 

types of simulated CBCT images and the experimental CBCT images. A leave-2-out scheme was 
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used in which eight of the ten CBCT images were alternately used for training and two for 

testing. In the leave-2-out scheme performed using the experimental CBCT images, the test set 

always consisted of the two CBCT images acquired from the same phantom head (i.e., the top 

and the bottom imaging protocol). This ensured that training and testing of the CNNs was fully 

independent. The 3D patch-based training strategy was only evaluated for U-Net since the MS-D 

network implementation used in this study does currently not support 3D convolutions.

All segmentation performances of the trained CNNs were assessed using the Dice similarity 

coefficient (DSC). The DSC is the most commonly used measure for the overlap between 

a segmented image and the corresponding gold standard segmentation labels, and is given by

� (1)

, where TP is the number of true positives, FP is the number of false positives and FN is the number 

of false negatives. To enable mutual comparisons between the segmentation performances 

achieved by the different training strategies, all DSCs were normalized by dividing them by the DSC 

achieved by the U-net trained on axial slices. Statistical differences were calculated using a paired 

nonparametric Wilcoxon signed-rank test at a predefined significance level of P < 0.05.

As an additional evaluation step, all segmented experimental CBCT images and gold standard 

CBCT images were converted into virtual 3D models in the standard tessellation language (STL) file 

format using 3D slicer software [36,37]. The resulting STL models were geometrically compared to 

the corresponding gold standard STL model using the surface comparison module in GOM Inspect 

software (GOM Inspect 2018, GOM GmbH, Braunschweig, Germany). Mean absolute deviations 

(MADs) between the gold standard STL models and the CNN-based STL models were calculated 

for bony structures that were oriented between -20 and 20° with respect to each of the three 

orthogonal planes (Fig. 4). The MADs were then separately analyzed for each orthogonal plane. 

This novel metric allowed us to investigate the influence of the spatial orientation of bony structures 

on the segmentation performance of the different CNN training strategies.

3 . 	 R E S U LT S

Generally, the highest mean DSCs were achieved using majority voting (Table 1 and 2; Figs. 5 and 6). 

The 3D patch-based strategy resulted in mean DSCs comparable to those achieved using majority 

voting when segmenting simulated CBCT images (Table 1; Fig. 5), but resulted in the lowest mean 

DSCs when segmenting experimental CBCT images (Table 2; Fig. 6). Both 2.5D strategies resulted 

in significantly lower mean DSCs compared to training on axial slices (P < 0.001) when segmenting 

simulated CBCT images. Moreover, the 5-channel strategy resulted in significantly lower mean DSCs 

compared to the 3-channel strategy (P < 0.001). In the experimental CBCT images, no significant 

differences were observed between the 2.5D strategies and the axial strategy. The randomly 

oriented 2D cross-sections strategy always resulted in similar DSCs compared to training on axial 

slices. Training on coronal slices resulted in significantly higher mean DSCs(P < 0.001) compared 

In order to compare the effectiveness of the aforementioned training strategies, CNN architectures were required 
that (1) can be broadly applied for many different medical image segmentation tasks and (2) are robust and easy to 
train on  a  small number of CBCT  images.  In order  to  comply with  (1), we  employed  the  commonly used U‐net 
architecture that has been used for a wide variety of medical  image segmentation tasks [40], [41], [42]. However, 
since U‐net consists of a relatively large number of trainable parameters, it tends to overfit when few training images 
are  available.  Therefore,  to  comply with  criterion  (2), we  also  used  the mixed‐scale dense convolutional neural 
network (MS‐D network) initially developed by Pelt and Sethian [43]. The MS‐D network uses dense connections to 
directly pass relevant  feature maps  to deeper  layers of  the network. As a result,  fewer trainable parameters are 
necessary compared to U‐Net [29], thereby reducing the risk of overfitting and making the MS‐D network particularly 
suited to process small imaging datasets. 
 
The U‐Net and the MS‐D network were implemented in Python (v. 3.7.4) using the deep learning framework PyTorch 
(v. 1.1.0) and are both publicly accessible online [44,45]. The U‐Net used in the present study was comparable to the 
one described by Ronneberger et al., [6] except  that we used batch normalization [46] after each Rectified Linear 
Units (ReLU) activation function and applied reflection padding on input images of which the dimensions were not 
divisible by 16. The MS‐D network was  the same as  the one proposed by Pelt and Sethian [43], with a depth of 
50 convolutional layers and a width of 1. 
 
In order to ensure a fair comparison between the different CNN training strategies, both CNN architectures (i.e., U‐
Net and MS‐D network) were trained using the default Adam optimizer [47] (i.e., learning rate = 0.001, ε=1x10‐8) with 
a batch size of 1 on a server with 192 GB RAM and one NVidia GeForce GTX 1080 Ti GPU. Both CNNs were trained for 
10 epochs on the experimental CBCT  images and  for 50 epochs on the simulated CBCT  images.  In order to avoid 
overfitting, a relatively small number of epochs (i.e., 10) was used to train the CNNs on the experimental data. The 
chosen number of epochs was based on the results of a previous study [29],  in which we  found that training the 
networks  for 10 epochs already was sufficient to achieve satisfactory performances  in  image segmentation tasks. 
Training of the CNNs on the simulated datasets was performed for 50 epochs. The reason for this was that the risk 
of overfitting on the simulated dataset was substantially smaller, since this dataset consisted of manually created 
CBCT scans that shared many similar  image properties and features compared to CBCT scans of the experimental 
dataset (e.g., same intensity values, same range of cylinder sizes). 
 
2.5. Evaluation 
 
All eight training strategies were evaluated on each of the four different datasets, i.e., the three types of simulated 
CBCT  images and the experimental CBCT  images. A  leave‐2‐out scheme was used  in which eight of the ten CBCT 
images were  alternately  used  for  training  and  two  for  testing.  In  the  leave‐2‐out  scheme  performed  using  the 
experimental CBCT images, the test set always consisted of the two CBCT images acquired from the same phantom 
head (i.e., the top and the bottom  imaging protocol). This ensured that training and testing of the CNNs was fully 
independent.  The  3D  patch‐based  training  strategy  was  only  evaluated  for  U‐Net  since  the  MS‐D  network 
implementation used in this study does currently not support 3D convolutions. 
 
All segmentation performances of the trained CNNs were assessed using the Dice similarity coefficient (DSC). The 
DSC is the most commonly used measure for the overlap between a segmented image and the corresponding gold 
standard segmentation labels, and is given by 
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2
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
               (1) 

, where TP is the number of true positives, FP is the number of false positives and FN is the number of false negatives. 
To  enable  mutual  comparisons  between  the  segmentation  performances  achieved  by  the  different  training 
strategies, all DSCs were normalized by dividing  them by  the DSC achieved by  the U‐net  trained on axial  slices. 
Statistical  differences were  calculated  using  a  paired  nonparametric Wilcoxon  signed‐rank  test  at  a  predefined 
significance level of P < 0.05. 
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Figure 4. Visual representation of the bony structures that were separately analyzed for each orthogonal plane.

to training on axial slices in all simulated experiments, whereas training on sagittal slices only 

outperformed the axial strategy when segmenting fixed orientation cylinders (P < 0.001). No 

significant differences were observed between the three 2D training strategies when segmenting 

experimental CBCT images. In addition, no significant differences were observed between the two 

CNN architectures, i.e., U-Net and MS-D network.

The segmentation performances of the eight CNN training strategies on experimental CBCT 

images were also compared using orientation-based surface comparisons. Generally, the majority 

voting strategy resulted in the lowest MADs, i.e., the least deviations from the gold standard STL 

models (Table 3; Fig. 7). Interestingly, the 2D strategies generally resulted in higher MADs when 

segmenting bony structures oriented in the same plane as the training slices. Furthermore, 

the randomly oriented 2D cross-sections strategy resulted in higher MADs when segmenting 

bony structures oriented in the axial plane compared to structures oriented in the sagittal and  

coronal planes.

The segmentation performances of the eight CNN training strategies on experimental CBCT 

images were also compared using orientation-based surface comparisons. Generally, the majority 

voting strategy resulted in the lowest MADs, i.e., the least deviations from the gold standard STL 

models (Table 3; Fig. 7). Interestingly, the 2D strategies generally resulted in higher MADs when 

segmenting bony structures oriented in the same plane as the training slices. Furthermore, 

the randomly oriented 2D cross-sections strategy resulted in higher MADs when segmenting 

bony structures oriented in the axial plane compared to structures oriented in the sagittal and  

coronal planes.

Table 4 shows the number of trainable parameters of the two network architectures used in 

this study, as well as the training time per epoch and the segmentation time required to segment 

one simulated CBCT image. The 2D U-Net comprised roughly 1000 time more trainable parameters 

and required longer training and segmentation times compared to the MS-D network. The 3D 

U-Net comprised approximately 3 times more trainable parameters compared to the 2D U-Net and 

the training and segmentation times were 30 and 10 time longer, respectively.
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Table 2. Mean Dice similarity coefficients (± standard deviation) of the segmented experimental CBCT images. 

U-Net MS-D network

2D

Axial 0.805 ± 0.10 0.809 ± 0.10

Sagittal 0.802 ± 0.11 0.806 ± 0.10

Coronal 0.799 ± 0.11 0.813 ± 0.10

Augmented 2D

2.5D

3 channels 0.813 ± 0.10 0.807 ± 0.09

5 channels 0.803 ± 0.10 0.801 ± 0.09

MV 0.821 ± 0.11 0.821 ± 0.10

randomly oriented  cross-sections 0.811 ± 0.09 0.808 ±0.09

3D

3D patches 0.782 ± 0.13 n.a.

4. 	 D I S C U S S I O N

Although CNNs are being employed for an increasing number of 2D and 3D medical image 

segmentation tasks, it remains unclear which CNN training strategy is best in terms of segmentation 

performance and computational cost. In this study, we therefore compared eight different 2D, 

augmented 2D and 3D CNN training strategies for the segmentation of CBCT images comprising 

structures with diverse spatial orientations. The strategy that generally resulted in the highest 

DSCs and lowest MADs was majority voting (Table 1–3; Figs. 5–7). This finding is in agreement with 

a recent study by Zhou et al., who improved the segmentation of multiple organs in abdominal CT 

images by training three different CNNs and combining the resulting segmentations [16]. These 

findings are also supported by the study of Mlynarski et al., who reported that a U-Net trained using 

the majority voting strategy more accurately segmented various anatomical regions in brain MRI 

scans than with a 2D axial strategy [48]. Majority voting strategies thus seem to perform well on 

various imaging datasets and anatomical regions of interest. The high segmentation performance 

achieved by majority voting strategies can be explained by the fact that they combine distinct 

anatomical features from different orthogonal slices, thereby correcting erroneously labeled voxels 

in one slice if these voxels are correctly labeled in the other two slices.

Both 2.5D CNN training strategies evaluated in this study resulted in comparable or worse 

segmentation performances compared to training on axial slices. These results are in line with 

those presented by Desai et al, who reported that their 2.5D strategy did not lead to more accurate 

segmentation of femur cartilage in MRI scans compared to training with axial slices [49]. However, 

contradicting findings were presented by Ben-Cohen et al. [15] and Vu et al. [50] who reported that 

their 2.5D strategies generally outperformed training on axial slices when segmenting different CT 

and MR images. Similarly, Zhang et al., showed that their U-Net trained with a 2.5D approach resulted 

in higher DSCs than training with axial slices when segmenting the heart and the spleen [51]. These 

contradicting findings may be explained by the fact that Ben-Cohen et al., Vu et al., and Zhang et 

al. segmented relatively large and connected soft tissue structures such as pelvic region organs or 
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Figure 5. Mean normalized Dice similarity coefficients (DSCs) of the segmented simulated CBCT images 

comprising cylinders with (a) fixed orientation; (b) limited-range random orientation; and (c) random 

orientation. DSCs were normalized by dividing them by the DSC obtained using U-Net trained on axial slices.
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Figure 6. Mean normalized Dice similarity coefficients (DSC) of the segmented experimental CBCT images. 

DSCs were normalized by dividing them by the DSC obtained using U-Net trained on axial slices.

Table 3. Mean absolute surface deviations (MADs) (± standard deviation) between the gold standard STL models 

and the STL models acquired using the eight different CNN training strategies. MADs were calculated separately 

for bony structures oriented in the axial, sagittal and coronal plane. 

MAD of bony structures 

in axial plane

(mm)

MAD of bony structures 

in sagittal plane

(mm)

MAD of bony structures 

in coronal plane

(mm)

U-Net

MS-D 

network U-Net

MS-D 

network U-Net

MS-D 

network

2D

Axial 0.48 ± 0.17 0.54 ± 0.17 0.36 ± 0.18 0.41 ± 0.20 0.42 ± 0.20 0.56 ± 0.33

Sagittal 0.43 ± 0.15 0.48 ± 0.14 0.51 ± 0.23 0.53 ± 0.16 0.42 ± 0.18 0.49 ± 0.13

Coronal 0.40 ± 0.12 0.41 ± 0.13 0.37 ± 0.16 0.41 ± 0.16 0.52 ± 0.25 0.52 ± 0.20

Augmented 2D

2.5D

3 channels 0.43 ± 0.14 0.43 ± 0.15 0.36 ± 0.18 0.40 ± 0.18 0.42 ± 0.22 0.43 ± 0.19

5 channels 0.44 ± 0.15 0.44 ± 013 0.34 ± 0.16 0.41 ± 0.16 0.41 ± 0.20 0.43 ± 0.17

MV 0.38 ± 0.14 0.36 ± 0.09 0.37 ± 0.18 0.38 ± 0.17 0.41 ± 0.23 0.39 ± 0.15

randomly oriented 

cross-sections

0.50 ± 0.17 0.49 ± 0.16 0.35 ± 0.18 0.42 ± 0.16 0.42 ± 0.20 0.46 ± 0.16

3D

3D patches 0.48 ± 0.20 n.a. 0.44 ± 0.24 n.a. 0.50 ± 0.36 n.a.
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Figure 7. Box and whisker plot of the mean absolute surface deviations (MADs) between the gold standard STL 

models and the STL models acquired using the eight different CNN training strategies. MADs were calculated 

separately for bony structures oriented in the axial (a), sagittal (b) and coronal (c) plane. The boxes represent 

the interquartile range and the whiskers represent the lowest and highest MAD. The median and mean are 

represented by the lines and dots in the boxes, respectively.
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Table 4. Overview of the number of trainable parameters, training times per epoch, and the times required to 

segment one simulated CBCT image. 

Number of trainable 

parameters

Training time  

per epoch (s)

Segmentation time 

per CBCT image (s)

U-Net

MS-D 

network U-Net

MS-D 

network U-Net

MS-D 

network

2D

Axial/sagittal/coronal 14,787,844 11,631 377.8 ± 0.4 260.2 ±1.3 25.6 ± 0.8 12.4 ± 0.8

Augmented 2D

2.5D

3 channels 14,789,006 12,545 377.4 ± 1.4 274.6 ± 1.0 29.3 ± 1.7 14.8 ± 0.7

5 channels 14,790,176 13,467 379.8 ± 2.6 288.6 ± 0.5 27.3 ± 0.3 15.6 ± 0.7

MV 3 x 

14,787,844

3 x 

11,631

3 x

377.8 ± 0.4

3 x

260.2 ±1.3

3 x 

25.6 ± 0.8

3 x 

12.4 ± 0.8

randomly oriented  

cross-sections

14,787,844 11,631 374,6 ± 0.4 260.3 ± 0.7 22,9 ± 0.1 10,8 ± 1.1

3D

3D Patches 42,944,900 n.a 9960.7 ± 58 n.a 259.3 ± 13.5 n.a

brain tumors, whereas the present study, and the study by Desai et al., focused on relatively small 

and thin structures of which the appearance can differ considerably between consecutive slices. 

The large variations in the shape of thin anatomical structures may have impeded the CNNs’ ability 

to learn spatial relations between multiple adjacent image slices.

Another interesting finding was that, in all simulated experiments, training on coronal slices 

outperformed training on axial slices (Table 1). This phenomenon may be due to the fact that 

coronal slices contained more voxels of each inner cylinder compared to axial slices (Fig. 1), which 

facilitated segmentation of the cylinders. When segmenting the experimental CBCT images, 

the best segmentation results were generally achieved by training on slices perpendicular to 

the orientation of the bony structures (Table 3 and Fig. 7). A possible explanation could be that 

structures in perpendicular slices are less affected by the partial volume effect, resulting in better 

contrast between the bony structures and the surrounding soft structures of the anthropomorphic 

phantom heads.

The 3D patch-based strategy evaluated in this study resulted in the highest mean DSC when 

segmenting simulated CBCT images, whereas it resulted in the lowest mean DSC when segmenting 

experimental CBCT images (Table 1, 2 and Figs. 5, 6). This difference is likely due to the fact that 

the simulated CBCT images only comprised inner cylinders with little morphological variation, 

whereas the experimental CBCT images comprised bony structures with large variations in shape, 

size and intensity. Consequently, optimization of the large number of trainable parameters in the 3D 

U-net (Table 4) was challenging with only 8 different CBCT images available for training. Another 

recent study that showed that 3D CNNs are not always better than 2D CNNs was conducted by 

Mlynarski et al., [52] who found that a conventional 3D U-Net did not outperform a 2D U-Net when 

segmenting brain tumors in MR images.
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The segmentation performances of the 2D and augmented 2D strategies evaluated in 

this study were comparable between the two CNN architectures, i.e. U-Net and the MS-D 

network. The observed performances are therefore likely to be generalizable to different CNN 

architectures. This finding is consistent with a recent study by Isensee et al., who showed that non-

architectural modifications such as training strategies can be more powerful than using different  

CNN architectures [53].

An important advantage of 2D and augmented 2D CNN training strategies over 3D strategies 

are the short computational times needed for training and segmentation (Table 4). In the present 

study, training of the 2D CNNs took approximately 7 min per epoch and segmentation of one 

simulated CBCT image (512 × 512 × 512) took less than 30 s. In comparison, training the 3D U-Net 

took almost 3 h per epoch and segmentation of a single CBCT image took more than 4 min. These 

longer computational times were caused by the 3D U-Net’s larger number of trainable parameters 

and the fact that more voxels needed to be processed during training and segmentation because of 

the overlapping 3D patches.

The insights gained from this study will hopefully help clinicians and engineers to choose 

a suitable CNN training strategy for the segmentation task at hand. Nevertheless, further research 

is needed to investigate to which extent the results of the present study can be generalized to other 

imaging modalities (e.g., MRI), different anatomical structures, or anisotropic images. Another 

possible direction for future research is to assess the impact of different training strategies when 

simultaneously segmenting multiple anatomical regions, i.e. multi-class segmentation. Finally, 

additional studies are necessary to determine whether the findings of this study also hold when 

applying different CNN architectures.

5 . 	 C O N C L U S I O N

The present study provides a comprehensive comparison between eight different 2D, augmented 

2D and 3D CNN training strategies for the segmentation of CBCT scans of the head and neck area. 

The empirical findings suggest that majority voting is a robust CNN training strategy that generally 

results in the best segmentation performances. However, if training three separate CNNs is 

infeasible, it is recommended to train on image slices perpendicular to the predominant orientation 

of the anatomical structure of interest.
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A B S T R AC T
Purpose

In order to attain anatomical models, surgical guides and implants for computer‑assisted surgery, 

accurate segmentation of bony structures in cone-beam computed tomography (CBCT) scans is 

required. However, this image segmentation step is often impeded by metal artifacts. Therefore, 

the current study aimed to develop a mixed-scale dense convolutional neural network (MS-D 

network) for bone segmentation in CBCT scans affected by metal artifacts.

Method

Training data were acquired from 20 dental CBCT scans affected by metal artifacts. An experienced 

medical engineer segmented the bony structures in all CBCT scans using global thresholding 

and manually removed all remaining noise and metal artifacts. The resulting gold standard 

segmentations were used to train an MS‑D network comprising 100 convolutional layers using far 

fewer trainable parameters than alternative convolutional neural network (CNN) architectures. 

The bone segmentation performance of the MS-D network was evaluated using a leave‑2-out 

scheme and compared with a clinical snake evolution algorithm and two state-of-the-art CNN 

architectures (U-Net and ResNet). All segmented CBCT scans were subsequently converted into 

standard tessellation language (STL) models and geometrically compared with the gold standard. 

Results

CBCT scans segmented using the MS-D network, U-Net, ResNet and the snake evolution algorithm 

demonstrated mean Dice similarity coefficients of 0.87 ± 0.06, 0.87 ± 0.07, 0.86 ± 0.05 and 0.78 ± 

0.07, respectively. The STL models acquired using the MS-D network, U-Net, ResNet and the snake 

evolution algorithm demonstrated mean absolute deviations of 0.44 mm ± 0.13 mm, 0.43 mm ± 0.16 

mm, 0.40 mm ± 0.12 mm and 0.57 mm ± 0.22 mm, respectively. In contrast to the MS-D network, 

the ResNet introduced wave-like artifacts in the STL models, whereas the U-Net incorrectly labelled 

background voxels as bone around the vertebrae in 4 of the 9 CBCT scans containing vertebrae.

Conclusion

The MS-D network was able to accurately segment bony structures in CBCT scans affected by  

metal artifacts.
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1 . 	 I N T R O D U C T I O N

The spatial information embedded in medical three-dimensional (3D) images is being increasingly 

used to personalize treatment by means of computer-assisted surgery (CAS) [1]. This new field of 

medicine encompasses virtual surgical planning [2], 3D printing of personalized constructs [3], such 

as anatomical models, surgical saw guides, or implants [4], virtual and augmented reality [5,6] and 

robot-guided surgery [7]. The use of such emerging technologies in medicine has resulted in better 

treatment outcomes and a reduction in both operating times and costs[3,8,9]. In recent years, 

CAS has reached a state of high technology readiness in maxillofacial surgery, where cone-beam 

computed tomography (CBCT) is rapidly becoming the imaging modality of choice due to the low 

costs and radiation dose [10].

An essential step in the maxillofacial CAS workflow is the conversion of these CBCT images 

into a virtual 3D model of the anatomical region of interest [11]. This conversion process requires 

accurate segmentation of bony structures in dental CBCT images [12]. Image segmentation is, 

however, often impeded by metal artifacts  [13]. Such artifacts are caused by high-density metal 

objects, such as amalgam fillings, crowns, dental implants, and retainers [14]. The presence of 

high‑density metal objects in the radiation beam path induces photon starvation and scattering that 

lead to characteristic bright and dark streak artifacts in the resulting CBCT images (see Fig. 1) [15]. 

These streak artifacts can obscure anatomical structures and reduce the contrast between adjacent 

regions [16], and thereby impede the segmentation process of the teeth and bony structures in 

the mandible and maxilla.

To overcome these challenges, various metal artifact reduction (MAR) methods have been 

proposed. Such methods commonly aim to reduce metal artifacts during the reconstruction phase 

of CBCT scans [17]. More specifically, an initial CBCT reconstruction is performed, followed by 

the segmentation of the metal structures and the removal of the segmented metal structures from 

the sinogram. Thereafter, a new reconstruction is performed based on the corrected sinogram, 

which results in a reduced incidence of metal artifacts in the reconstructed CBCT scan [18]. 

However, the performance of such MAR methods depends strongly on the quality of the initial 

metal artifact segmentation [19], and is often limited by the introduction of secondary artifacts 

[18,20] and incomplete metal artifact correction [21]. As a consequence, metal artifacts remain  

a challenge in CAS.

In recent years, deep learning has been increasingly used for MAR. The majority of these 

approaches are based on convolutional neural networks (CNNs). CNNs can learn to extract 

information from a large number of training images to perform certain tasks in the MAR workflow, 

such as CBCT sinogram correction [22–24]. In a recent study by Zhang and Yu (2018), a CNN-based 

MAR framework was developed that fused the information from original and corrected MDCT 

images to suppress metal artifacts [25]. These corrected MDCT images were obtained by combining 

multiple conventional MAR methods. A major drawback of such MAR frameworks is that they 

first need to be trained using two sets of images of the same patient — one set of artifact free 

images and one set of images affected by artifacts. Since such paired datasets are often unavailable 

in clinical settings, most deep learning-based MAR methods rely on mathematical simulations of 
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metal artifacts that typically do not fully represent the photon and detector physics of individual 

MDCT or CBCT scanners.

Instead of relying solely on such mathematical simulations, it is also possible to use deep 

learning for MAR during the CBCT image segmentation step. A major advantage of CNNs is that 

they can be efficiently trained using high quality “gold standard” CBCT segmentations of teeth 

and bony structures created by human experts during CAS. To date, a variety of CNN architectures 

have been proposed for medical image segmentation [26]. However, since it is relatively difficult 

to acquire a sufficient number of gold standard segmentations in clinical settings, it is important to 

choose a CNN architecture with few trainable parameters that can be trained using few datasets. 

Therefore, in this study, the authors for the first time employed a novel mixed-scale dense CNN 

(MS-D network) architecture [27] to segment dental CBCT scans affected by metal artifacts. 

Furthermore, the performance of this MS‑D network was compared with two state-of-the-art CNN 

architectures, namely U‑Net [28] and ResNet [29] In addition, a clinical snake evolution algorithm 

[30] that is commonly used for medical image segmentation was evaluated. Specifically, the main 

contributions of this study are as follows:

1.	 CNNs were used to deal with metal artifacts in dental CBCT scans during image segmentation, 

rather than image reconstruction.

2.	 A novel mixed-scale dense CNN was trained on a relatively small dataset of dental  

CBCT images.

3.	 The mixed-scale dense CNN resulted in comparable segmentation performances as U-Net 

and ResNet CNN architectures, while using far fewer trainable parameters.

4.	 All CNNs outperformed a widely-used clinical snake evolution method.

Figure 1. Example of metal artifacts in a CBCT image of the mandible. 
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2 . 	 M AT E R I A L S  A N D  M E T H O D S
2.1.	 Data acquisition

A total of 20 dental CBCT scans that had been heavily affected by metal artifacts caused by dental 

restorations and appliances were used in this study. Of these CBCT scans, 2 were used for validation 

(see section 2.3. Implementation and training details) and 18 were used for training (see section 2.4. 

Evaluation). All scans were obtained on a Vatech PaX‑Zenith3D (Vatech, Gyeonggi-do, South-Korea) 

CBCT scanner using a tube voltage of 105 kVp, a tube current of 6 mA and an isotropic voxel size 

of 0.2 mm. Each CBCT scan was cropped to a confined region of interest that included the lower 

part of the maxilla, the mandible and both condyles, resulting in variable scan dimensions ranging 

from 800 × 412 × 190 (patient 9) to 1000 × 724 × 383 (patient 10). All CBCT scans were normalized by 

subtracting the mean voxel value of the training CBCT scans and dividing the resulting values by 

the standard deviation.

In order to train a CNN for bone segmentation in these CBCT scans, gold standard segmentation 

labels were required. These gold standard labels were created by segmenting all CBCT scans using 

global thresholding, followed by extensive manual postprocessing by an experienced medical 

engineer using Mimics software (Mimics v20.0, Materialise, Leuven, Belgium). This postprocessing 

step was necessary to remove the noise and metal artifacts caused by dental fillings and appliances. 

This task took approximately 2 h per scan to complete.

2.2.	 CNN architecture

In this study, we used a mixed-scale dense CNN (MS-D network) architecture originally proposed 

by Pelt and Sethian [27]. This network architecture combines small- and large-scale features with far 

fewer trainable parameters compared with state-of-the-art U-Net architectures [28]. These properties 

enable an MS-D network to be trained more efficiently and reduce the risk of overfitting [27].

A schematic overview of an MS-D network architecture with three convolutional layers is presented 

in Figure 2. Note that the MS-D network architecture used in this study comprised 100 convolutional 

layers. Each convolutional layer performs a convolutional operation on its input to produce an 

intermediate image, also known as a feature map. All feature maps are used to compute the final 

output segmentation.

A feature map z
i
 in convolutional layer i is calculated as

� (1)
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800 × 412 × 190 (patient 9) to 1000 × 724 × 383 (patient 10). All CBCT scans were normalized by subtracting the mean 
voxel value of the training CBCT scans and dividing the resulting values by the standard deviation. 
 
In order to train a CNN for bone segmentation in these CBCT scans, gold standard segmentation labels were required. 
These  gold  standard  labels were  created  by  segmenting  all  CBCT  scans  using  global  thresholding,  followed  by 
extensive  manual  postprocessing  by  an  experienced  medical  engineer  using  Mimics  software  (Mimics  v20.0, 
Materialise, Leuven, Belgium). This postprocessing step was necessary to remove the noise and metal artifacts caused 
by dental fillings and appliances. This task took approximately 2 h per scan to complete. 
 
2.2. CNN architecture 
 
In this study, we used a mixed‐scale dense CNN (MS‐D network) architecture originally proposed by Pelt and Sethian 
[27].  This  network  architecture  combines  small‐  and  large‐scale  features  with  far  fewer  trainable  parameters 
compared with state‐of‐the‐art U‐Net architectures [28]. These properties enable an MS‐D network to be trained 
more efficiently and reduce the risk of overfitting [27]. 
 
A schematic overview of an MS‐D network architecture with three convolutional layers is presented in Figure 2. Note 
that the MS‐D network architecture used in this study comprised 100 convolutional layers. Each convolutional layer 
performs a convolutional operation on its input to produce an intermediate image, also known as a feature map. All 
feature maps are used to compute the final output segmentation. 
 

 
Figure 2. Schematic representation of an MS‐D network architecture with 3 convolutional layers. 

A feature map zi in convolutional layer i is calculated as 
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where 𝜎𝜎  is a  rectified  linear unit  (ReLU) activation  function  [31] and 𝑏𝑏�  is a  constant bias  term. The  function 𝑔𝑔�  
performs a 2D 3x3 dilated convolution 𝐷𝐷�,� on all previously computed  feature maps  �𝑧𝑧�, … , 𝑧𝑧���� and  sums  the 
resulting feature maps in a pixel‐wise manner, giving 
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where h is a convolutional kernel and s is the dilation factor. In a dilated convolution, a kernel h is expanded by a 
dilation factor s and filled with zeros at distances that are not a multiple of s voxels from the kernel center. Thus, by 
increasing the dilation factor, the MS‐D network is able to detect large features [27] without increasing the number 
of kernel weights [32]. In the present study, the dilation factor was initialized as 1 in the first convolutional layer, and 
then  increased by 1  in each subsequent convolutional  layer. After 10 convolutional  layers, the dilation factor was 
reset to 1 and the process was repeated. This enabled the MS‐D network to extract mixed‐scale features from the 
input CBCT slices. In addition, all dilated convolutions were performed using reflective boundaries. As a result, the 
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where h is a convolutional kernel and s is the dilation factor. In a dilated convolution, a kernel h is 

expanded by a dilation factor s and filled with zeros at distances that are not a multiple of s voxels 

from the kernel center. Thus, by increasing the dilation factor, the MS-D network is able to detect 

large features [27] without increasing the number of kernel weights [32]. In the present study, 

the dilation factor was initialized as 1 in the first convolutional layer, and then increased by 1 in 

each subsequent convolutional layer. After 10 convolutional layers, the dilation factor was reset to 

1 and the process was repeated. This enabled the MS-D network to extract mixed-scale features 

from the input CBCT slices. In addition, all dilated convolutions were performed using reflective 

boundaries. As a result, the size and shape of all feature maps remained equal to those of the initial 

input. The major advantage of equally sized feature maps is that the convolutional layers are not 

restricted to using only the feature map of the previous layer to compute a new feature map. Instead, 

all previously computed feature maps, including the initial input, are used to compute a new feature 

map, resulting in a densely connected network (Fig. 2). 

The output y of an MS-D network is computed by applying 1x1 convolutional kernels w
i
 to all 

previously computed feature maps {z
0
,…,z

i-1
}, adding a constant bias term b and applying a softmax 

activation function σ'. This can be written as follows:

� (3)

Since y is a continuous variable with values between 0 and 1, a cut-off value was required to obtain 

a binary segmentation (i.e., “bone” or “background”). In the present study, we treated this cut‑off 

value as an additional hyper‑parameter of the MS-D network.

2.3.	 Implementation and training details

The hyper-parameters of the MS-D network, that is, the number of layers and the cut-off value, were 

determined by validating the network on two CBCT scans. During these validation experiments, 

the number of layers was varied between 30 and 150 (30, 50, 80, 100 and 150), and the cut-off value 

was varied between 0.1 and 0.9 with a step size of 0.2. Optimal performance of the MS-D network 

size and shape of all feature maps remained equal to those of the initial input. The major advantage of equally sized 
feature maps is that the convolutional layers are not restricted to using only the feature map of the previous layer to 
compute a new feature map. Instead, all previously computed feature maps, including the initial input, are used to 
compute a new feature map, resulting in a densely connected network (Fig. 2).  
 
The output y of an MS‐D network is computed by applying 1x1 convolutional kernels 𝑤𝑤� to all previously computed 
feature maps �𝑧𝑧�, … , 𝑧𝑧����, adding a constant bias term b and applying a softmax activation function 𝜎𝜎�. This can be 
written as follows: 
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Figure 2. Schematic representation of an MS-D network architecture with 3 convolutional layers.
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was achieved using 100 convolutional layers and a cut-off value of 0.7. The validation dataset was 

also used to find the optimal number of epochs (10) for training.

The MS-D network was implemented in Python (version 3.6.1) using Pytorch (version 0.3.1). 

Training of the MS-D network was performed on 2D axial CBCT slices using a batch size of 1 and 

the default Adam optimizer [33] on a Linux desktop computer (HP Workstation Z840) with 64 GB 

RAM, a Xeon E5-2687 v4 3.0 GHZ CPU and a GTX 1080 Ti GPU card. Training took approximately 5 h 

for each epoch.

2.4.	 Evaluation

The segmentation performance of the MS-D network was evaluated using the 18 CBCT scans 

available for training (see Section 2.1. Data acquisition). A leave-2-out scheme [34] was used so that 

16 of the 18 training CBCT scans were alternately used for training and 2 for testing. As a clinical 

benchmark, these 18 CBCT scans were also segmented using a snake evolution algorithm that is 

commonly used for various clinical segmentation purposes [35-38]. This algorithm is available in 

the open-source ITK‑SNAP software package [30] and requires an initial segmentation using global 

thresholding, followed by selection of seed points in the region of interest (i.e., bone).

In addition, the performance of the MS-D network was compared to two state‑of‑the‑art CNN 

architectures available on Github, namely U-Net [39] and ResNet [40]. The U‑Net used in this study 

is comparable to the one described by Ronneberger et al. [40], except that our implementation 

performed batch normalization [[32]] after each ReLU and used reflection padding on images of 

which the dimensions were not divisible by 16. The ResNet used in this study was a residual network 

comprising 50 layers as described by He et al. [40]. Both CNNs were trained using 4 epochs and 

a cut-off value of 0.3.

The segmentation performance of all three CNNs and the clinical snake evolution algorithm 

was evaluated using the Dice similarity coefficient (DSC). The DSC indicates the overlap between 

a segmented CBCT scan and the corresponding gold standard segmentation. This can be written 

as follows:

� (4)

where TP is the number of true positives, FP is the number of false positives and FN is the number 

of false negatives.

All segmented CBCT scans and corresponding gold standard segmentations were subsequently 

converted into virtual 3D models in the standard tessellation language (STL) file format using 3D Slicer 

software [42,43] The resulting STL models were geometrically compared with the corresponding 

gold standard STL models using the surface comparison function in GOM Inspect software (GOM 

Inspect 2018, GOM GmbH, Braunschweig, Germany). Signed deviations between 5.0 and +5.0 mm 

were measured between the acquired STL models and the gold standard STL models. The mean 

absolute deviations (MADs) were calculated for all STL models.

Since  y  is  a  continuous  variable with  values  between  0  and  1,  a  cut‐off  value was  required  to  obtain  a  binary 
segmentation  (i.e., “bone” or “background”).  In  the present study, we  treated  this cut‐off value as an additional 
hyper‐parameter of the MS‐D network. 
 
2.3. Implementation and training details 
 
The hyper‐parameters of the MS‐D network, that is, the number of layers and the cut‐off value, were determined by 
validating the network on two CBCT scans. During these validation experiments, the number of  layers was varied 
between 30 and 150 (30, 50, 80, 100 and 150), and the cut‐off value was varied between 0.1 and 0.9 with a step size 
of 0.2. Optimal performance of the MS‐D network was achieved using 100 convolutional layers and a cut‐off value of 
0.7. The validation dataset was also used to find the optimal number of epochs (10) for training. 
 
The MS‐D network was  implemented  in Python (version 3.6.1) using Pytorch (version 0.3.1). Training of the MS‐D 
network was performed on 2D axial CBCT slices using a batch size of 1 and the default Adam optimizer [33] on a Linux 
desktop computer (HP Workstation Z840) with 64 GB RAM, a Xeon E5‐2687 v4 3.0 GHZ CPU and a GTX 1080 Ti GPU 
card. Training took approximately 5 h for each epoch. 
 
2.4. Evaluation 
 
The segmentation performance of the MS‐D network was evaluated using the 18 CBCT scans available for training 
(see Section 2.1. Data acquisition). A leave‐2‐out scheme [34] was used so that 16 of the 18 training CBCT scans were 
alternately used for training and 2 for testing. As a clinical benchmark, these 18 CBCT scans were also segmented 
using a snake evolution algorithm that  is commonly used for various clinical segmentation purposes [35‐38]. This 
algorithm is available in the open‐source ITK‐SNAP software package [30] and requires an initial segmentation using 
global thresholding, followed by selection of seed points in the region of interest (i.e., bone). 
 
In addition, the performance of the MS‐D network was compared to two state‐of‐the‐art CNN architectures available 
on Github, namely U‐Net [39] and ResNet [40]. The U‐Net used in this study is comparable to the one described by 
Ronneberger et al. [40], except that our implementation performed batch normalization [[32]] after each ReLU and 
used reflection padding on images of which the dimensions were not divisible by 16. The ResNet used in this study 
was a residual network comprising 50 layers as described by He et al. [40]. Both CNNs were trained using 4 epochs 
and a cut‐off value of 0.3. 
 
The segmentation performance of all three CNNs and the clinical snake evolution algorithm was evaluated using the 
Dice  similarity  coefficient  (DSC).  The  DSC  indicates  the  overlap  between  a  segmented  CBCT  scan  and  the 
corresponding gold standard segmentation. This can be written as follows: 
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where TP is the number of true positives, FP is the number of false positives and FN is the number of false negatives. 
 
All segmented CBCT scans and corresponding gold standard segmentations were subsequently converted into virtual 
3D models in the standard tessellation language (STL) file format using 3D Slicer software [42,43] The resulting STL 
models were geometrically compared with the corresponding gold standard STL models using the surface comparison 
function  in GOM  Inspect  software  (GOM  Inspect 2018, GOM GmbH, Braunschweig, Germany). Signed deviations 
between 5.0 and +5.0 mm were measured between the acquired STL models and the gold standard STL models. The 
mean absolute deviations (MADs) were calculated for all STL models. 
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3 . 	 R E S U LT S

In all CBCT scans affected by metal artifacts, the MS-D network resulted in fewer erroneously labeled 

voxels in the dental region than the snake evolution algorithm (Fig. 3). Moreover, the MS-D network 

resulted in a more complete segmentation of the condyles and the rami than the snake evolution 

algorithm in 13 of the 18 CBCT scans (Fig. 3). Furthermore, in 8 out of 9 CBCT scans that contained 

parts of the vertebrae, the MS-D network segmented these vertebrae, whereas the snake evolution 

algorithm incorrectly labeled the vertebrae as the background in all 9 CBCT scans. Quantitatively, 

the snake evolution algorithm and the MS-D network resulted in a mean DSC of 0.78 ± 0.07 and 

0.87 ± 0.06, respectively (Table 1). U-Net and ResNet resulted in mean DSCs of 0.87 ± 0.07 and 0.86 

± 0.05, respectively.

Generally, all STL models acquired using the CNNs, i.e., the MS-D network, U-Net and 

ResNet, contained fewer outliers in the dental region than the STL models acquired using 

the snake evolution algorithm (Fig. 4). However, in contrast to the MS-D network, the ResNet 

introduced wave-like artifacts in all 18 STL models (Fig. 4), whereas the U-Net incorrectly labeled 

Figure 3. Examples of the best (patient 7) and worst (patient 13) MS-D network performances and three typical 

examples (patients 6, 11, and 20). Each example comprises an axial CBCT slice, the gold standard (manual) 

segmentation, and the segmentations acquired using the snake evolution algorithm, MS-D network, U-Net 

and ResNet.
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background voxels as bone around the vertebrae in 4 of the 9 CBCT scans containing vertebrae  

(Fig. 4; patients 7, 13 and 20).

Figure 5 visualizes the surface deviations between all STL models and their corresponding gold 

standard STL models. In 11 of the 18 patients, the 10‑90 percentile range acquired using the snake 

evolution algorithm was larger than those acquired using the CNNs. When compared with the gold 

standard STL models, the STL models acquired using the MS-D network resulted in a mean MAD of 

0.44 ± 0.13 mm; whereas the STL models acquired using the snake evolution algorithm resulted in 

a mean MAD of 0.57 ± 0.22 mm. The STL models acquired using U-Net and ResNet resulted in mean 

MADs of 0.43 ± 0.16 mm and 0.40 ± 0.12 mm, respectively.

4. 	 D I S C U S S I O N

High-density metal fillings and appliances are very common in the oral cavity. For example, more 

than half of the American population has at least one dental filling and approximately 25% are 

estimated to have more than 7 fillings [44]. Consequently, metal artifacts caused by such objects 

Figure 4. Color maps of the surface deviations of five STL models acquired using the snake evolution 

algorithm, MS-D network, U-Net and ResNet. All depicted surface deviations were calculated with respect to 

the corresponding gold standard STL model.
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remain a challenge in CBCT imaging. Such artifacts can obscure bony regions in the mandible and 

maxilla and can lead to inaccuracies and time constraints during the image segmentation process 

required for computer-assisted maxillofacial surgery.

All CNNs trained in this study (MS-D network, U-Net and ResNet) were able to segment bony 

structures in CBCT scans and classify metal artifacts as background more accurately than the current 

clinical benchmark, i.e., the snake evolution algorithm (Fig. 3 and Table 1). This finding is likely due 

to the CNNs’ ability to learn characteristic features that distinguish bone from metal artifacts. 

The snake evolution algorithm, on the other hand, is a model-driven segmentation method that 

is solely based on identifying intensity gradients in images. Although such intensity‑based image 

segmentation methods generally perform well in identifying the edges of bony structures in CBCT 

images [35], they tend to fail in the presence of metal artifacts due to the introduction of strong 

intensity gradients in the reconstructed CBCT images.

The DSCs found in our study (Table 1) are comparable to those reported by Wang et al. (2015), 

who used a prior-guided random forest to segment the maxilla and mandible in 30 CBCT scans and 

reported a mean DSC of 0.91 ± 0.03 for the maxilla and 0.94 ± 0.02 for the mandible [45]. However, 

their dataset only included 4 CBCT scans that were affected by metal artifacts. Evain et al. (2017) 

recently developed a graph‑cut approach for the segmentation of individual teeth [46]. Although 

their algorithm achieved a high mean DSC of 0.958 ± 0.023, they also reported that false edges were 

induced in images affected by metal artifacts [46].

Figure 5. Box and whisker plot of the surface deviations between the STL models acquired using the snake 

evolution algorithm, MS-D network, U-Net, ResNet, and the corresponding gold standard STL models. 

The boxes represent the interquartile range and the whiskers represent the 10th and 90th percentiles of 

the surface deviations. 
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As an additional evaluation step in our study, all segmented CBCT scans were converted into 

STL models and geometrically compared with the corresponding gold standard STL models. 

Interestingly, fewer outliers were observed in the STL models acquired using the CNNs than in 

the STL models acquired using the snake evolution algorithm (Figs. 4 and 5). The MADs acquired 

in the present study are smaller than those obtained by Lamecker et al. (2006), who developed 

a statistical shape model for the segmentation of the mandible in CBCT scans and found mean 

surface deviations larger than 1 mm, even though they excluded all teeth from statistical analysis 

due to severe metal artifacts [47] The MADs obtained in this study are, however, higher than those 

reported by Gan et al. (2014), who segmented individual teeth in CBCT scans using a level-set 

method and achieved a MAD of 0.3 ± 0.08 mm [48]. Nevertheless, it must be noted that Gan et al. 

did not include any CBCT scans affected by metal artifacts because their level-set algorithm failed 

to identify teeth contours in these scans.

The novel MS-D network resulted in accurate segmentations that were comparable to those 

achieved by U-Net and ResNet, using fewer trainable parameters (Table 2). Reducing the number 

of parameters is crucial in clinical settings since it minimizes the risk of overfitting [27] and prevents 

common deep learning issues such as vanishing gradients and local minima [49]. Another major 

advantage of MS-D networks over U-Net and ResNet is the use of dilated convolutional kernels 

Table 1. Dice similarity coefficients (DSCs) of all CBCT scans segmented using the snake evolution algorithm, 

MS-D network, U‑Net and ResNet.

Patient ID Snake evolution MS-D network U-Net ResNet

1 Validation set Validation set Validation set Validation set

2 Validation set Validation set Validation set Validation set

3 0.67 0.89 0.86 0.82

4 0.72 0.85 0.79 0.75

5 0.60 0.75 0.78 0.78

6 0.80 0.85 0.88 0.82

7 0.76 0.94 0.93 0,90

8 0.83 0.92 0.91 0.90

9 0.80 0.89 0.87 0.78

10 0.90 0.92 0.92 0.90

11 0.84 0.92 0.92 0.85

12 0.84 0.78 0.69 0.90

13 0.73 0.73 0.78 0.82

14 0.86 0.83 0.88 0.90

15 0.75 0.91 0.90 0.88

16 0.77 0.91 0.92 0.90

17 0.76 0.86 0.91 0.86

18 0.81 0.88 0.94 0.92

19 0.86 0.90 0.87 0.82

20 0.79 0.91 0.90 0.90

Mean 0.78 ± 0.07 0.87 ± 0.06 0.87 ± 0.07 0.86 ± 0.05
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instead of standard convolutional kernels. This allows MS-D networks to learn which combinations 

of dilations are most suited to solve the task at hand and offers the unique possibility to use the same 

MS-D network architecture for a broad range of different applications such as segmenting organelles 

in microscopic cell images [27], image denoising [27] and improving the resolution of tomographic 

reconstructions [50]. Finally, all layers of an MS-D network are interconnected using the same set of 

standard operations [see Section 2.2, Eqs. (1) and (2)], which greatly simplifies implementation and 

training of an MS-D network in clinical settings [27].

Another interesting finding in this study was that the MS-D network was able to accurately 

segment bony regions that were not affected by metal artifacts, such as the medial parts of the rami, 

the condyles and the vertebrae (Fig. 3; patients 6 and 13). On the other hand, the segmentations 

obtained using ResNet demonstrated less anatomical details (Figs. 3 and 4), which can result 

in ill‑fitting personalized constructs during CAS [4]. Furthermore, the segmentations obtained 

using U-Net were less accurate in the vicinity of the vertebrae when compared to those obtained 

using the MS-D network. A possible explanation for this phenomenon is that the MS-D network 

was better capable to learn features of relatively rare structures in the training dataset such as 

the vertebrae. These results demonstrate that the MS-D network is well suited for “real-world” 

clinical segmentation purposes.

An important advantage of all three CNNs evaluated in this study over alternative clinical 

segmentation methods is the short computational time required for image segmentation. More 

specifically, all three CNNs automatically segmented each CBCT scan in <5 min. In comparison, 

the semi-automatic clinical snake evolution algorithm segmented a single CBCT scan in 20 min to 1 h. 

All CNN segmentation times found in this study are markedly quicker than the atlas-based method 

described by Wang et al. (2015) that segmented a single CBCT scan in 5 h [45]. Moreover, a previously 

published patch-based CNN for MDCT image segmentation of the skull took approximately 1 h to 

segment a single MDCT scan [51]. The short segmentation times of the CNNs in this study were 

primarily due to their fully-convolutional nature that allows the CNNs to segment CBCT images 

using far fewer convolutional operations than patch-based CNNs [26].

Taking the aforementioned advantages in terms of performance and speed into account, 

deep learning is now coming of age for medical image segmentation, especially with advanced 

architectures such as the MS-D network. The next step toward making deep learning-based 

solutions available for challenging image segmentation tasks in CAS would be to develop, test and 

certify interactive plugins for medical image processing software packages.

Table 2. The number of trainable parameters used by the MS-D network, U-Net and ResNet.

CNN model Number of trainable parameters

MS-D network 45,756

U-Net 14,787,842

ResNet 32,940,996
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5 . 	 L I M I TAT I O N S

One challenge that all supervised deep learning algorithms have in common is the overall accuracy 

of the gold standard segmentations. Especially the presence of metal artifacts can negatively 

influence the judgements of experienced medical engineers and subsequently affect the quality of 

their gold standard segmentations. Furthermore, the process of creating sufficient gold standard 

segmentations can be very time-consuming. One solution could be to adopt an iterative training 

strategy in which a pretrained CNN is used to perform an initial segmentation of a CBCT scan, after 

which a medical engineer only has to correct the errors and retrain the CNN. Another interesting 

direction for future research is the potential use of 3D CNNs due to the 3D characteristics of metal 

artifacts in dental CBCT scans.

6. 	 C O N C L U S I O N

This study presents a mixed-scale dense CNN (MS-D net-work) to segment teeth and bony 

structures in CBCT images heavily affected by metal artifacts. Experimental results demonstrated 

that the segmentation performance of the MS-D network was comparable to those of state-of-the-

art U-Net and ResNet CNN architectures, while preserving more anatomical details in the resulting 

STL models and using fewer trainable parameters. Moreover, all CNNs outperformed a commonly 

used clinical snake evolution algorithm. These promising results show that deep learning offers 

unique possibilities to eliminate the inaccuracies caused by metal artifacts in the CAS workflow.
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A B S T R AC T 

High cone-angle artifacts(HCAAs) appear frequently in circular cone-beam computed tomography 

(CBCT) images and can heavily affect diagnosis and treatment planning. To reduce HCAAs in 

CBCT scans, we propose a novel deep learning approach that reduces the three-dimensional (3D) 

nature of HCAAs to two-dimensional (2D) problems in an efficient way. Specifically, we exploit 

the relationship between HCAAs and the rotational scanning geometry by training a convolutional 

neural network (CNN) using image slices that were radially sampled from CBCT scans. We evaluated 

this novel approach using a dataset of input CBCT scans affected by HCAAs and high-quality 

artifact-free target CBCT scans. Two different CNN architectures were employed, namely U-Net 

and a mixed-scale dense CNN (MS-D Net). The artifact reduction performance of the proposed 

approach was compared to that of a Cartesian slice-based artifact reduction deep learning approach 

in which a CNN was trained to remove the HCAAs from Cartesian slices. In addition, all processed 

CBCT scans were segmented to investigate the impact of HCAAs reduction on the quality of CBCT 

image segmentation. We demonstrate that the proposed deep learning approach with geometry-

aware dimension reduction greatly reduces HCAAs in CBCT scans and outperforms the Cartesian 

slice-based deep learning approach. Moreover, the proposed artifact reduction approach 

markedly improves the accuracy of the subsequent segmentation task compared to the Cartesian  

slice-based workflow. 
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1 . 	 I N T R O D U C T I O N

Circular cone-beam computed tomography (CBCT) is becoming an increasingly popular imaging 

modality in dentistry and maxillofacial surgery due to its short scanning times, low costs and 

low radiation doses compared to conventional computed tomography (CT) scanners [1]. A well-

known problem in circular CBCT imaging is the high cone-angle artifact (HCAA), also referred to 

as the cone-beam artifact. These artifacts occur because projection data acquired in a circular 

x-ray source trajectory are not complete: the Tuy-Smith data sufficiency condition is not satisfied 

[2, 3]. This implies that it is impossible to exactly reconstruct data points outside the midplane, 

i.e. the plane in which x-ray source and projector rotate. Therefore, approximate methods such as 

the Feldkamp–David–Kress(FDK) [4] algorithm are commonly used. However, these approximations 

typically lead to streaking artifacts and image distortions that become more severe with increasing 

cone-angles [5]. Figure 1 presents a schematic overview of the circular CBCT image acquisition and 

reconstruction process of a walnut using the FDK algorithm. 

Over the past decades, various approaches have been proposed to reduce HCAAs. For 

example, Grass et al. developed a modified FDK algorithm that rearranges the pixels in cone-beam 

projections into fan-shaped projections [6]. Another popular approach is to reconstruct CBCT scans 

using iterative reconstruction (IR) methods [7, 8]. Although IR algorithms generally result in fewer 

HCAAs [9] and higher signal-to-noise ratios [10] compared to FDK reconstruction, they require 

much longer reconstruction times, which limits their clinical feasibility [11, 12]. Hu et al. and Zhu 

et al. independently proposed cone-angle artifact reduction approaches in which missing CBCT 

projection data were estimated [13, 14]. However, this approach resulted in residual artifacts due 

to incorrect estimation of high-frequency Radon space data [14]. Another way to reduce HCAAs is 

the two-pass approach initially developed by Hsieh [15], in which high-density structures in FDK-

reconstructed CBCT scans are segmented using global thresholding, followed by a simulation and 

subtraction of the HCAAs from the CBCT scans. This two-pass approach was recently expanded to 

Figure 1. Schematic illustration of the CBCT image acquisition and reconstruction process with a circular x-ray 

source trajectory. The source and detector rotate around the object (e.g. a patient or in this case a walnut), 

and 2D x-ray projections of the object are acquired angle by angle. The 3D projection data volume f is indexed 

by the vertical and horizontal detector coordinates z and s, and angle θ. The order of operations in the FDK 

algorithm mirrors that of the data acquisition: each filtered 2D x-ray projection is backprojected angle by angle 

and added to the reconstructed CT volume.
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a multi-pass approach by Han and Baek [16], who performed multiple segmentations to iteratively 

subtract HCAAs from the CBCT scans. However, these manually designed artifact reduction 

techniques require expert domain knowledge on the precise structure of the information in 

the measured data.

In recent years, the field of image artifact reduction has transitioned from manually designed 

image artifact reduction techniques reflecting expert domain knowledge to training deep neural 

networks. In particular convolutional neural networks (CNNs) have been employed to reduce 

a wide variety of CBCT image artifacts, such as metal artifacts [17–19], scatter-induced artifacts 

[20–22], and noise [23]. The main advantage of CNNs over alternative methods is that they can 

learn to automatically compute a generalized mapping between artifact-affected input images and 

artifact‑free target images. However, training CNNs to process full high resolution three‑dimensional 

(3D) image volumes remains computationally prohibitive and requires a large amount of suitable 3D 

training data. As a consequence, the feasibility of such fully 3D CNNs is extremely limited in clinical 

settings, where predictions are needed promptly. In order to circumvent this problem, CNNs are 

commonly trained on Cartesian two-dimensional (2D) image slices extracted from 3D volumes. 

The reduction of HCAAs in Cartesian image slices is, however, subject to difficulties not seen 

with other imaging artifacts. One inherent problem is that the HCAAs in a particular Cartesian slice 

often originate from image structures in other slices. As a consequence, the contextual information 

needed to remove the artifacts is lacking. Another difficulty is the fact that the severity of HCAAs 

depends on the distance between the Cartesian slice and the midplane (Fig. 2) and thus greatly differs 

between slices. We hypothesize that this variability impairs the CNN’s ability to learn a generalized 

mapping between input and target CBCT slices, which subsequently results in incomplete artifact 

reduction or secondary artifacts. One way of reducing this variability is to train separate CNNs for 

each Cartesian slice position. However, this is computationally extremely challenging and requires 

far more training data since only a single 2D training slice would be extracted from each 3D volume. 

Another way of reducing the variability using expert domain knowledge was presented by Han et 

al. [24] who used a CNN to process slices of the differentiated backprojection domain in different 

Cartesian slices, after which the slices were combined by a spectral blending technique. 

Figure 2. Illustration of the high cone-angle artifact in a Defrise phantom with five ellipses and a maximum 

cone-angle of 25°. Increasing the distance between the ellipse and the midplane produces stronger HCAAs in 

the reconstructed volume.
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In this study, we propose a simpler approach to reduce high HCAAs in CBCT scans using deep 

learning by exploiting the most basic property of the CBCT scanning trajectory: its rotational 

geometry. The rotational nature of data acquisition in CBCT combined with the angle-wise 

backprojection performed by the FDK algorithm (Fig.  1) leads to HCAAs that share the same 

rotational geometry. Therefore, we suggest that this rotational geometry should also be retained 

when post-processing the CBCT scans. To this end, we developed a workflow in which we sample 

2D radial CBCT slices (i.e., angle by angle), instead of processing conventional 2D Cartesian slices 

to train a CNN. Radially sampled slices exhibit much less variation in HCAAs than Cartesian slices, 

which simplifies the cone-angle artifact reduction task. In addition, a large number of radial slices 

can be extracted from a single 3D volume, which further facilitates CNN training. The proposed 

combination of deep learning with geometry- and context-aware dimension reduction thus 

allows processing of high-resolution 3D CBCT volumes by 2D CNNs with high accuracy and  

computational efficiency. 

The main contributions of this study are as follows: 

•	 We propose a CBCT imaging pipeline consisting of the following steps: direct FDK 

reconstruction of radial image slices, followed by a 2D CNN and re‑sampling of the radial 

slices into a regular 3D volume.

•	 This approach was evaluated using a large, publicly available, experimental CBCT dataset 

specifically designed to examine cone‑angle artifact reduction techniques. For each CBCT 

scan that was reconstructed using projection data from a single x-ray source trajectory, 

a high-quality, HCAA-free target scan is available that was acquired by combining the single-

trajectory projection data with projection data from two additional trajectories using an IR 

scheme.

•	 The results of this study show that the proposed radial slicing approach improves the artifact 

reduction performance of CNNs compared to traditional Cartesian slicing in terms of 

quantitative error measures and visual image quality. In addition, we demonstrate that this 

process leads to substantial improvements in image segmentation performance, which is 

currently the most commonly performed image processing task in clinical settings [25].

2 . 	 M AT E R I A L S  A N D  M E T H O D S

Our proposed HCCA reduction approach is based on a direct reconstruction of radial slices using 

the FDK algorithm. These radial slices are subsequently processed by a CNN, after which they are 

re-sampled into a Cartesian volume. The proposed artifact reduction workflow was compared 

to a Cartesian slice-based artifact reduction workflow, in which a standard FDK-reconstructed 

volume is sliced orthogonally (i.e., axial, sagittal or coronal) and each slice is processed by a CNN. 

The Cartesian slice‑based workflow and the proposed artifact reduction workflow are illustrated  

in Figure 3. 

In order to evaluate both artifact reduction workflows, a CBCT dataset was required consisting 

of input scans that were heavily affected by HCAAs and high‑quality target scans without HCAAs. To 

this end, we used a publicly available CBCT data collection containing 42 scans of walnuts described 
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in a previous publication [26]. This data collection was specifically acquired with the purpose of 

benchmarking HCAA reduction algorithms. The advantage of using walnuts over anthropomorphic 

phantoms or manufactured objects is that they exhibit a natural variability. Moreover, since 

walnuts consist of a hard shell, soft core and air-filled cavities, they resemble the structure of  

the human skull [27]. 

2.1.	 Data acquisition 

The input CBCT scans were obtained by scanning all 42 walnuts using a custom-built cone-beam CT 

scanner (FleX-ray) [28], with a tube voltage of 40 kV and a tube current of 0.3 mA. To ensure that that 

the CBCT scans were affected by severe HCAAs, the vertical cone-angle was maximized by moving 

the samples as close as possible to the x-ray source. This resulted in a maximum cone-angle of 20°, 

which is comparable to cone-angles found in clinical CBCT scanners [29, 30]. In addition, the x-ray 

source height was chosen such that the midplane was close to the bottom part of the walnuts, 

which induced severe artifacts in the upper parts of the scans (Fig. 4). A total of 1201 cone-beam 

projections were acquired and used to reconstruct CBCT scans with a volume size of 501 × 501 × 501 

and an isotropic voxel size of 0.1 mm using the FDK algorithm implemented in the ASTRA Toolbox 

[31]. These reconstructed CBCT scans served as input data to train the CNN in this study. 

In order to acquire high-quality target CBCT scans, all 42 walnuts were also scanned at 15 and 30 

mm above the initial source height. The projection data obtained from the three different source 

positions were used to iteratively reconstruct CBCT scans by solving a non-negativity constrained 

least-squares problem with 50 iterations of Nesterov accelerated gradient descent [26,32]. Since 

three different x-ray source trajectories were used, projections with relatively small cone-angles 

were available for all parts of the walnut. By combining these projections, high-quality artifact-free 

target CBCT scans were acquired that offered high contrast and signal-to-noise ratios. Examples of 

the input and target CBCT scan used in this study are presented in Figure 4. 

In order to obtain the data for the proposed cone-angle artifact reduction workflow, radial 

CBCT slices needed to be reconstructed from the projection data. Although it is relatively straight-

forward to implement an FDK algorithm that directly reconstructs radial slices [33, 34], we aimed 

Figure 3. Schematic overview of a Cartesian slice-based workflow and the proposed cone-angle artifact 

reduction workflow.
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to first prove the concept of the proposed workflow. For this purpose, we interpolated radial slices 

from the Cartesian input and target volumes described above. To minimize interpolation artifacts, 

we only extracted slices close to the central x- and y-axes of the Cartesian volumes, i.e. for radial 

angles θ close to 0° and 90°. In order to acquire slices from the whole range of radial angles, we 

artificially rotated the scanning geometry and again extracted radial slices close to 0° and 90°. This 

process was repeated 24 times, such that a total of 709 radial slices were acquired per reconstructed 

volume. We used a larger number of radial slices compared to Cartesian slices (709 versus 501) to 

ensure that the radial‑to‑Cartesian re-sampling (see  section 2.3. Experiments) performed after 

the cone-angle artifact reduction step (Fig. 3) would not result in secondary artifacts.

2.2.	 CNN architectures 

Two different CNN architectures were used to evaluate the proposed artifact reduction workflow. 

First, we employed the widely-used U-Net. Since U-Net consists of a relatively high number of 

trainable parameters it tends to overfit when the training set is relatively small [35]. Therefore, 

we also used a mixed‑scale dense convolutional neural network (MS-D Net) developed by Pelt 

and Sethian [35]. The MS-D networkuses densely connected convolutional layers to directly 

pass important feature maps to deeper layers of the network. Information from various scales is 

aggregated by dilating convolutions instead of using explicit up- and downsampling layers. As 

a result, MS-D network has far fewer trainable parameters compared to U-Net, which reduces 

the risk of overfitting [35]. 

We used publicly available U-Net and MS-D network implementations [36, 37] that are based 

on the deep learning framework PyTorch (v. 1.4.0) for Python (v. 3.7.3). The U-Net employed in 

the present study was modified in two ways compared to the original U-Net architecture proposed 

by Ronneberger et al. [38]. First, reflective padding was applied on all input images of which 

the dimensions were not divisible by 16, since the U-Net would not be able to process these images 

otherwise. Second, batch normalization [39] was performed before each ReLU activation function. 

Figure 4. Examples of an input and target CBCT scan used to train the CNNs in this study. The red boxes indicate 

the regions of interest that were particularly affected by high HCAAs.
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The MS-D network used in this study was the same as the one described by Pelt and Sethian [35] 

with a width of 1. Training of the network was performed using a batch size of 4 for the U-Net, and 

a batch size of 1 for the MS-D Net. In addition, training was performed using the default Adam [40] 

optimizer on a server with 192 GB RAM and one NVidia GeForce GTX 1080 Ti GPU. More detailed 

implementation details and justification of the chosen network parameters can be found in 

the Supplemental Material.

2.3.	 Experiments 

The Cartesian slice-based artifact reduction workflows and the proposed artifact reduction 

workflow (Fig. 3) were evaluated in this study. For this purpose, we divided the 42 available CBCT 

scans into a training set comprising 28 scans, a validation set comprising 7 scans, and a test set 

comprising 7 scans.

The validation set was used to determine the number of epochs necessary to train the MS-D 

network and the U-Net. The best model performances were achieved after 40 epochs for U-Net, 

and 60 epochs for MS-D Net. The validation set was also used to optimize the number of layers 

in the MS-D network. Specifically, the number of layers was varied between 10 and 100 with 

a step size of 10. The number of layers, i.e. 80, was chosen such that the MS-D network achieved 

the highest performance on the validation set. The training process of U-Net and MS-D network 

took approximately 47 min and 107 min per epoch, respectively, whereas the processing of all slices 

in one CBCT scan using the trained networks took approximately 27 s and 34 s, respectively. 

The trained CNNs were subsequently used to reduce artifacts in the seven CBCT scans of the test 

set. To ensure that differences in artifact reduction performance were not due to randomness in 

the initialization of the CNNs’ trainable parameters, both the U-Net and the MS-D network were 

independently initialized and trained five times. To enable fair comparison between the two artifact 

reduction workflows, all processed radial slices were re-sampled into a Cartesian volume using linear 

interpolation. The code used for the radial‑to‑Cartesian resampling is publicly available online [41].

2.4.	 Performance evaluation metrics 

The cone-angle artifact reduction achieved using the proposed artifact reduction workflow was 

compared to those of Cartesian slice-based artifact reduction workflows. More specifically, 

the Cartesian slice-based artifact reduction workflow was evaluated independently three times, once 

for each orthogonal slice orientation (i.e. axial, sagittal and coronal). As an additional benchmark, 

we applied the Nesterov accelerated gradient descent reconstruction algorithm to the projection 

data acquired using only the lowest x-ray source position (see section 2.1. Data acquisition). We will 

refer to this method as the IR approach. Furthermore, we included the FDK‑reconstructed input 

CBCT scans in the comparison. The cone-angle artifact reduction performances were evaluated by 

computing the structural similarity (SSIM) index [42] and the mean-squared error (MSE) between 

the artifact-free target CBCT scans and the output of each approach. These metrics have been 

commonly used to assess the quality of medical images including CBCT scans [43]. 

In addition to these generic image quality metrics, we examined the impact of the artifact 

reduction on a concrete, clinically-relevant image processing task. Since CBCT scans are being 
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increasingly used for human skull segmentation [19] and the walnuts used in this study were chosen 

as proxies for the human skull, we assessed the impact of the proposed approach on the accuracy of 

CBCT image segmentation. For this purpose, Otsu’s thresholding method [44] was used to segment 

all CBCT scans into three different classes: background, soft inner walnut structures and the hard 

outer shell. Evaluation of this segmentation step was performed by calculating the Dice similarity 

coefficient (DSC) between the segmented target CBCT scans and the CBCT scans segmented after 

cone‑beam artifact reduction. Since the HCAAs were most severe in the upper parts of the CBCT 

scans, all three metrics (i.e. SSIM, MSE and DSC) were also computed for this specific region of 

interest (ROI), which is indicated by the red boxes in Figure  4. All metrics were calculated for 

the seven CBCT scans in the test set. The metrics obtained using the trained CNN’s (i.e. U-Net and 

MS-D Net) were averaged over the five independent runs.

3 . 	 R E S U LT S 

The SSIMs, MSEs and DSCs obtained using the different cone-angle artifact reduction approaches 

are summarized in Table 1 and Table 2. Of all evaluated approaches, the proposed geometry-aware 

artifact reduction workflow generally resulted in the highest mean SSIMs and mean DSCs, and 

the lowest mean MSEs. The FDK-reconstructed input CBCT scans always resulted in the lowest SSIMs 

and DSCs, and the highest MSEs. When analyzing the full CBCT scans (i.e. no ROI), the IR approach 

resulted in SSIMs that were comparable or higher than all other evaluated approaches, whereas 

the IR approach was outperformed by all deep learning approaches when analyzing the ROI in 

the upper part of the scans. The proposed artifact reduction workflow generally resulted in higher 

mean SSIMs and lower mean MSEs compared to the Cartesian slice-based workflows. However, 

the proposed artifact reduction workflow resulted in lower mean DSCs than the horizontal slice-

based workflow.

Figure 5 shows examples of HCAA reduction in CBCT slices, and the corresponding segmentations. 

All CBCT scans processed with the deep learning approaches demonstrated reduced HCAAs. More 

specifically, the proposed artifact reduction workflow produced CBCT scans that closely resembled 

the target CBCT scans and generally resulted in less residual HCAAs when compared to those 

produced by the Cartesian slice-based artifact reduction approach. The Cartesian slice-based 

approaches produced secondary artifacts (Fig. 6) in the majority of CBCT scans, which significantly 

affected their image qualities. The IR approach generally produced high‑quality CBCT scans with 

low noise levels, but failed to remove the HCAAs from the upper parts of the scans. Figure 7 shows 

an example of a radial slice and an axial slice obtained through the radial-to-Cartesian interpolation 

step in the proposed HCAA reduction workflow. The interpolation step did not result in any  

notable artifacts.

4. 	 D I S C U S S I O N

HCAAs are an inherent problem of circular CBCT technology. Although deep learning has recently 

been successfully employed to reduce various imaging artifacts, cone-angle artifact reduction 

remains especially challenging. Therefore, the aim of this study was to develop a novel deep 

learning-based artifact reduction workflow that exploits the symmetry of HCAAs. 
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Table 1. Structural similarity (SSIM) index (± standard deviation) and the mean-squared error (MSE) (± standard 

deviation) produced by the different artifact reduction approaches.  

SSIM MSE (x10-6)

Full volumes ROI Full volumes ROI

Input - FDK 0.679 ± 0.067 0.547 ± 0.079 15.12 ± 2.58 55.50 ± 8.15

IR approach 0.963 ± 0.009 0.870 ± 0.030 5.04 ± 1.25 27.54 ± 6.54

U-Net

Axial     0.919 ± 0.028 0.918 ± 0.040 19.70 ± 15.21 8.56 ± 3.12

Sagittal 0.930 ± 0.039 0.945 ± 0.029 41.11 ± 43.10 13.43 ± 10.32

Coronal 0.956 ± 0.020 0.943 ± 0.031 2.61 ± 0.97 6.51 ± 2.14

Proposed 0.957 ± 0.047 0.953 ± 0.017 2.59 ± 0.76 6.38 ± 3.12

MS-D Net

Axial     0.947 ± 0.029 0.920 ± 0.032 2.88 ± 1.43 8.50 ± 3.33

Sagittal 0.953 ± 0.017 0.915 ± 0.035 3.04 ± 1.26 7.93 ± 2.77

Coronal 0.942 ± 0.023 0.904 ± 0.049 3.96 ± 2.50 10.1 ± 3.65

Proposed 0.949 ± 0.021 0.932 ± 0.031 2.56 ± 0.70 5.71 ± 2.37 

Table 2. Mean Dice similarity coefficients (DSC) (± standard deviation) of the segmented low-density inner 

structures and high-density outer structures. 

DSC – low density structures DSC – high density structures

Full volumes ROI Full volumes ROI

Input - FDK 0.904 ± 0.017 0.720 ± 0.033 0.895 ± 0.022 0.682 ± 0.027 

IR approach 0.911 ± 0.015 0.772 ± 0.166 0.917 ± 0.019 0.794 ± 0.025

U-Net

Axial     0.898 ± 0.040 0.863 ± 0.130 0.913 ± 0.034 0.936 ± 0.016 

Sagittal 0.914 ± 0.039 0.897 ±0.027 0.931 ± 0.044 0.918 ± 0.087

Coronal 0.946 ± 0.016 0.908 ± 0.015 0.956 ± 0.020 0.946 ± 0.014

Proposed 0.933 ± 0.012 0.898 ± 0.013 0.951 ± 0.013 0.945 ± 0.017

MS-D Net

Axial     0.941 ± 0.018 0.891 ± 0.017 0.942 ± 0.061 0.933 ± 0.018

Sagittal 0.940 ± 0.019 0.896 ± 0.014 0.950 ± 0.018 0.937 ± 0.017

Coronal 0.936 ± 0.020 0.894 ± 0.032 0.945 ± 0.018 0.925 ± 0.020

Proposed 0.933 ± 0.013 0.902 ± 0.013 0.952 ± 0.013 0.950 ± 0.014

The proposed geometry- and context-aware artifact reduction workflow was able to reduce 

HCAAs in CBCT scans more effectively than the Cartesian slice‑based artifact reduction workflow 

(Figs. 5 and 6). Moreover, the CNNs trained in the proposed workflow always resulted in SSIMs, MSEs 

and DSCs that were comparable or better than those obtained using the IR approach (Tables 1 and 

2). The primary reason why the proposed workflow resulted in better HCAA reduction is that radial 

slicing provides a more efficient dimension reduction from 3D to 2D compared to Cartesian slicing: 

the HCAAs exhibit much less spatial variation in radial slices compared to Cartesian slices, and radial 

slices offer more relevant context to remove the HCAAs. This facilitates the training process of 
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Figure 5. Example of a vertical slice of a CBCT scan processed by the HCAA reduction methods. The upper 

row (a) shows the output of the different artifact reduction approaches, and the bottom row (b) shows 

the corresponding segmented slices. Of the three evaluated Cartesian slice approaches, only the results of 

the coronal slice-based approach are visualized since it performed best in terms of SSIMs, MSEs and DSCs.

Figure 6. Examples of secondary artifacts in walnut CBCT slices produced by Cartesian slice‑based workflows 

(i.e. axial, sagittal and coronal).
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a CNN and enables the learning of a generalized mapping between artifact-affected input scans and 

artifact-free target scans. 

An interesting finding in this study was that the Cartesian slice-based artifact reduction workflows 

resulted in unexpectedly severe secondary artifacts in the majority of the CBCT scans (Fig. 6). This 

phenomenon was observed when using both U-Net and MS-D Net. Since the secondary artifacts 

manifested as clearly distinguishable streaks in the Cartesian planes, it is likely that the CNNs failed 

to correctly process the corresponding Cartesian slices of those CBCT scans. A possible explanation 

for this finding is that the CNNs tried to reduce HCAAs in all slices of the CBCT scan, even if those 

slices were not affected by HCAAs. After all, since the CNNs had no contextual information on 

the position of the 2D slices within the CBCT scan, it might have been difficult to distinguish artifact-

affected slices from artifact-free slices. 

A major advantage of using CNNs for cone-angle artifact reduction is the low computational 

time required to process CBCT scans compared to more traditional methods such as the IR approach. 

More specifically, the time needed to process one CBCT scan in this study was approximately 27 s for 

U‑Net and 34 s for MS-D Net, whereas the IR approach took approximately 20 min to reconstruct 

a CBCT scan (512×512× 512). The shorter computational times make it much easier to incorporate 

these CNNs approaches in clinical workflows. 

Another advantage of the proposed HCAA artifact reduction workflow is its broad applicability. 

Since our workflow exploits basic geometrical properties of circular CBCT scanners, it is expected 

that this workflow is capable of accurately reducing HCAAs in CBCT scans obtained using any kind 

of circular CBCT scanner. Moreover, the proposed deep learning workflow may provide promising 

avenues to reduce HCAAs in limited angle CBCT systems. Nevertheless, further research is necessary 

to determine whether CNNs trained on scans from a specific CBCT scanner can generalize to scans 

acquired using different CBCT scanners. 

Figure 7. Example of a radial slice and an axial slice obtained through the radial-to-Cartesian interpolation step 

in the proposed HCAA reduction workflow.
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A technical challenge of employing our novel deep learning approach was the radial-to-

Cartesian resampling step that is necessary after processing the radial CBCT slices. Although Figure 

7 shows that no notable interpolation artifacts were introduced in this study, the re-sampling step 

remains a 2D task that is performed for each z-slice independently, which could possibly introduce 

minor interpolation artifacts in the CBCT scans [45]. One way of avoiding such interpolation artifacts 

could be to use a deep learning-based interpolation method [46]. Because such methods are able to 

memorize local structures in CBCT scans, they can recognize geometric variations and thus produce 

more accurate pixel estimations. 

The next step towards employing the proposed artifact reduction workflow is to translate 

the learning procedure and the necessary data acquisition to clinical practice. A possible way of 

achieving this would be to perform a phantom or cadaver study and acquire high-quality target 

CBCT scans following the methodology of the present study, i.e. by combining projection data 

from three different circular x-ray trajectories. Another option would be to use helical CT scans 

as the high-quality target, since those are not affected by HCAAs. However, since patients are not 

commonly scanned using both CBCT and helical CT, it might be necessary to apply semi-supervised 

learning approaches such as generative adversarial networks [47]. Another way of facilitating 

the application of the proposed approach in clinical settings might be through transfer learning. In 

such a transfer learning scheme, the CNN models trained on walnut CBCT scans could be used as 

the initial model, instead of randomly initializing a new model. Since the models do not need to be 

trained from scratch, fewer clinical CBCT scans would be necessary to learn the cone-angle artifact 

reduction. By translating the proposed deep learning-based cone-angle artifact reduction approach 

into the clinic, medical practitioners will be able to establish accurate diagnoses and create feasible 

treatment plans based on circular CBCT images of the patient. In addition, the proposed workflow 

might allow clinicians to scan larger volumes by increasing the cone-angles, which would markedly 

improve the applicability of circular CBCT technology.

5 . 	 C O N C L U S I O N

This study presents a novel pipeline to reduce HCAAs in CBCT scans with deep learning. By designing 

a tailored dimension reduction scheme that reflects the rotational symmetry of CBCT scans, we were 

able to efficiently reduce 3D cone-angle artifacts in CBCT scans with 2D CNNs. The proposed HCAA 

reduction workflow showed to be more robust than the Cartesian slice-based workflows, while it 

consistently outperformed the IR approach. In addition, we showed that the cone-angle artifact 

reduction leads to considerable improvements when segmenting the CBCT scans. The results of 

this study will hopefully motivate clinicians and medical engineers to adopt the proposed artifact 

reduction workflow in clinical settings, thereby opening up promising new avenues for a large-scale 

use of CBCT imaging in a wide variety of medical disciplines.
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S U P P L E M E N TA L  M AT E R I A L :  C N N  I M P L E M E N TAT I O N  D E TA I L S

This supplemental material provides a detailed description of the implementation of the CNN 

architectures in the present study. In addition, the challenges faced when training these architectures 

and the importance of choosing correct training parameters are addressed. 

In the present study, two CNN architectures were implemented, namely U‑Net and a mixed‑scale 

dense convolutional neural network (MS-D Net). A U-Net consists of a down-sampling path and an 

up-sampling path (Fig. S1). The down-sampling path reduces the dimensions of the input image in 

order to extract (i.e., encode) the most relevant image features at different scales. In turn, the up-

sampling path uses these image features to reconstruct the desired image output. Both paths are 

inter‑connected with skip‑connections that allow the network to combine image feature at various 

dimensional scales. 

An MS-D network consist of multiple densely-connected convolutional layers (Fig.  S2). This 

means that the output of each convolutional layer, i.e., the feature map, is passed to all subsequent 

convolutional layers in the network, instead of only passing the output to next convolutional 

layer. Furthermore, instead of using down- or up-sampling paths, the MS-D network uses 

dilated convolutions to recognize important features at different scales. In a dilated convolution, 

a convolutional kernel is expanded by a dilation factor s and filled with zeros at distances that are not 

a multiple of s voxels from the kernel center. In the present study, The dilation factor was set as 1 for 

the first convolutional and was doubled after each subsequent layer. After the fifth  convolutional 

layer (i.e., a dilation factor of 16), the dilations factor was reset  to 1, and the process was repeated. 

Figure S1. Schematic representation of the U-Net architecture used in the present study.
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The implementation of the U-Net and MS-D network used in our study was based on publicly 

available code [1, 2]. The source code is built in the deep learning framework PyTorch (v. 1.4.0) in 

Python (v. 3.7.3). The U‑Net employed in the present study comprised two small modifications 

compared to the original U-Net proposed by Ronneberger et al. [3]. First, we applied reflective 

padding on all input images of which the dimensions were not divisible by 16, since the U-Net would 

not be able to process these images otherwise. Second, batch normalization [4] was performed 

before each ReLU activation function. The MS-D network used in this study was the same as the one 

described by Pelt and Sethian [5] with a width of 1. 

Training of the CNNs was initially performed using the default parameters defined in the original 

source code. This means that both networks were trained with a batch size of 1, an L2 loss function, 

and a default Adam optimizer (i.e., learning rate = 0.01, ε=1e-8). Training of the U-Net was performed 

for 40 epochs since convergence of the L2 loss was observed, and overfitting started to occur when 

trained for longer. The MS-D network was trained for 60 epochs since the validation loss did not 

improve when trained longer. A depth of 80 layers was chosen for the MS-D network since this 

resulted in the highest artifact reduction performance on the validation set. 

Although these CNN training parameters generally resulted in satisfying artifact reduction 

performances, it must be noted that the U-Net trained on radial slices occasionally created 

erroneous air cavities in the soft structures of the walnuts in the CBCT scans (Fig. S3). 

Since such mistakes cannot be afforded in clinical settings, we further investigated the training 

process of the U-Net. In this context, we found that the U-Net exhibited unstable behavior during 

training: the training and validation losses strongly oscillated (Fig. S4). The oscillating behavior of 

the training and validation losses made us believe that the batch size should be increased when 

training the U-Net. Moreover, we hypothesized that changing the learning rate or the loss function 

could help the U-Net to converge more easily. To this end, multiple U-Net models were trained 

with various batch sizes, learning rates and loss functions. The different settings are summarized  

in Table S1. 

Based on these experiments, we found that configuration ID 5 resulted in the most satisfying 

training and validation loss curves (i.e., reduced oscillating behavior). Hence, only the batch size was 

increased compared to the default values; the learning rate and loss function were kept the same. 

Figure S2. Example of an MS-D network architecture with a depth of 3 convolutional layers and a width of 1. 
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Figure S3. Example of a CBCT scan in which a U-Net trained on radial slices (proposed) erroneously created air 

cavities within the soft inner structures of the walnut.

Figure S4. Example of training and validation losses of a U-Net trained with a batch size of 4.

The U-Net trained with these configurations was able to adequately reduce cone-angle artifacts in 

CBCT scans without producing erroneous air cavities. 
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Table S1. Overview of the configurations used to train U-Net. 

Configuration ID Batch size Learning rate Loss function

1 (default) 1 0.001 L2

2 1 0.001 L1

3 1 0.0001 L2

4 1 0.005 L2

5 4 0.001 L2

6 4 0.0001 L2

7 4 0.005 L2
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A B S T R AC T  

Computer-assisted surgery (CAS) allows clinicians to personalize treatments and surgical 

interventions and has therefore become an increasingly popular treatment modality in maxillofacial 

surgery. The current maxillofacial CAS consists of three main steps: (1) CT image reconstruction, 

(2) bone segmentation, and (3) surgical planning. However, each of these three steps can 

introduce errors that can heavily affect the treatment outcome. As a consequence, tedious and 

time-consuming manual post-processing is often necessary to ensure that each step is performed 

adequately. One way to overcome this issue is by developing and implementing neural networks 

(NNs) within the maxillofacial CAS workflow. These learning algorithms can be trained to perform 

specific tasks without the need for explicitly defined rules. In recent years, an extremely large 

number of novel NN approaches have been proposed for a wide variety of applications, which 

makes it a difficult task to keep up with all relevant developments. This study therefore aimed 

to summarize and review all relevant NN approaches applied for CT image reconstruction, bone 

segmentation, and surgical planning. After full text screening, 76 publications were identified: 32 

focusing on CT image reconstruction, 33 focusing on bone segmentation and 11 focusing on surgical 

planning. Generally, convolutional NNs were most widely used in the identified studies, although 

the multilayer perceptron was most commonly applied in surgical planning tasks. Moreover, 

the drawbacks of current approaches and promising research avenues are discussed.
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1 . 	 I N T R O D U C T I O N

Spatial information embedded in medical three-dimensional (3D) images is being increasingly 

used to personalize treatments by means of computer-assisted surgery (CAS). This novel image-

based treatment modality enables clinicians to perform patient-specific virtual operations, 3D-print 

personalized medical constructs and perform robot-guided surgery [1]. Moreover, CAS offers 

the unique possibility to conduct a limitless amount of different surgical simulations (osteotomies, 

grafts, implants, etc.) prior to surgery in a stress-free environment [1], and to predict surgical 

outcomes with minimal risk to the patient. Furthermore, such virtual simulations have proven to be 

useful for patient communication and medical education [2,3]. As a result, CAS is currently being 

employed in multiple surgical branches involving the musculoskeletal system. In particular, CAS has 

advanced in the area of maxillofacial surgery [4]. 

The current maxillofacial CAS workflow consists of different steps that are illustrated in  

Figure 1. The first step in the workflow is image acquisition. To date, numerous imaging modalities 

have become available on the market, including CT and MRI. CT imaging modalities are most 

commonly used to visualize bony structures due to their superior hard tissue contrast. CT scanners 

acquire X-ray projections of the patients’ anatomy from multiple angles. These projection data can 

be subsequently reconstructed into a 3D image using a wide variety of reconstruction methods. After 

the CT image acquisition step, image processing is necessary to convert the CT scans into a virtual 

3D model in the standard tessellation language (STL) file format. This file format is supported by all 

FDA-approved medical software packages that are currently used for computer-aided design (CAD) 

and computer-aided manufacturing. The most important step in this CT-to-STL conversion is image 

segmentation (Fig. 1), in which clinicians define and delineate anatomies of interest such as bone. In 

the final step of the CAS workflow, the acquired STL models are exported to dedicated medical CAD 

software packages and used for surgical planning by virtually designing patient-specific implants, 

surgical guides and radiotherapy boluses [5].

Each of the aforementioned steps (i.e. CT image reconstruction, bone segmentation and surgical 

planning) is a potential source of errors which can lead to inaccuracies in the final STL models and 

impair the treatment outcome [6]. For example, imaging noise, metallic structures and patient 

movements can heavily affect the CT image quality after reconstruction. For image segmentation, 

the segmentation technique can have a considerable effect on the accuracy of the resulting model 

[6]. Furthermore, the surgical planning step currently relies on extensive domain expertise and 

manual software input, which often hampers its reproducibility.

Figure 1. Schematic overview of the maxillofacial CAS workflow.



C H A P T E R  7

126

7

One way to overcome these limitations is to employ neural networks (NNs) during the different 

steps of this maxillofacial CAS workflow. These learning algorithms are different from traditional 

computer methods in that they can be trained to find characteristic features and patterns in 

data, without the need for explicit rules specified by domain experts. The most common NN is 

the multilayer perceptron (MLP), which consists of an input layer, several hidden layers and an 

output layer. Each of these layers comprises several computational building blocks called neurons. 

Within an MLP, neurons are connected to neurons in subsequent layers. The output of each neuron 

is the product of its input with a learned set of weights plus a learned bias. Finally, a non-linear 

activation function is applied [7]. It can be proven that MLPs can approximate any continuous 

function (universal approximation theorem [8]), which gives them the ability to infer descriptive 

functions from data.

In the training phase, the weights and biases of a NN are learned from training data. During this 

training process, a large amount of input data is propagated through the NN to predict the values 

of the output layer. The goal of training is to minimize the difference between the NN prediction 

and the desired output by iteratively updating the weights and biases of the network. After 

optimizing these trainable parameters, NNs can be used to automatically perform specific tasks of 

the maxillofacial CAS workflow.

Recent advances in computational power and the development of novel NN algorithms have 

brought about a paradigm shift in the CAS workflow [9]. A wide variety of advanced NN architectures 

have been successfully employed for various tasks such as image reconstruction and segmentation. 

For example, convolutional neural networks (CNNs) are especially useful for processing image data. 

These networks apply convolutions instead of a set of multiplications to compute the output of 

the individual layers. Another important type of neural networks is the recurrent neural network 

(RNN), which can handle temporal dynamic data. However, due to the rapidly increasing number 

of studies published in the field, maxillofacial surgeons and medical engineers have been facing 

the difficult task of keeping up with all developments. Therefore, this scoping review aims to 

provide an overview of the different types of NN approaches that have been used during the three 

main steps required in the CAS workflow, i.e. CT image reconstruction, bone segmentation and 

surgical planning. Furthermore, the secondary goal of this review paper is to identify the current 

bottlenecks and possible next research steps regarding the application of NNs in the maxillofacial 

CAS workflow.

2 . 	 M AT E R I A L S  A N D  M E T H O D S

Existing literature on the application of NNs in the maxillofacial CAS workflow was obtained using 

Pubmed, Embase, Scopus, Web of Science, and Google Scholar. An initial database was generated 

with the following search terms:

•	 (CT OR CBCT OR computed tomography OR cone-beam computed tomography) AND 

(image reconstruction OR image processing OR image analysis OR image segmentation) 

AND (artificial intelligence OR deep learning OR neural network)
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•	 (bone OR bones OR bony) AND ((implant OR prosthesis OR virtual model) AND (design 

OR planning OR construct OR model)) AND (artificial intelligence OR deep learning  

OR neural network)

It must be noted that there was no specific focus on maxillofacial surgery when defining 

the search terms. The reason for this is that we believe that many of the techniques and methods 

used in other fields can also be of relevance to maxillofacial CAS. Choosing more generic search 

terms thus allowed us to identify a wider variety of literature relevant that was potentially relevant 

to maxillofacial CAS.

Publications were only included in the initial database if the search terms one or two were found 

in their title, abstract or keywords. After removing duplicates and adding literature found from 

references, a database of 6994 papers was acquired. The title and abstract of these publications 

were screened, resulting in 248 publications that were eligible for full-text reading. In order to assess 

whether papers were eligible for inclusion, the following inclusion and exclusion criteria were used:

Inclusion criteria:

•	 Described the development or implementation of a NN.

•	 Performed at least one of the three main steps required in the maxillofacial CAS workflow, 

i.e. CT image reconstruction, bone segmentation and surgical planning. Although surgical 

planning is an extremely broad field, this review specifically focused on the designing and 

optimization of implants and virtual models.

•	 Evaluated on medical data sets or artificial medical phantoms.

Exclusion criteria:

•	 Used non-CT based imaging modalities.

The study selection process of the present study is shown in Figure 2.

3 . 	 R E S U LT S  A N D  D I S C U S S I O N

This review aimed to identify NN architectures, training strategies and workflows that can potentially 

benefit CT image reconstruction, bone segmentation or surgical planning, since these steps are 

pivotal in the CAS workflow. In total, 76 studies were included in this review: 32 focusing on CT 

image reconstruction, 33 focusing on bone segmentation and 11 focusing on surgical planning. All 

studies are summarized in Table 1. In addition, Figure 3 shows the most popular NN approaches used 

in the reviewed studies.

Of the 27 reviewed studies for CT image reconstruction, 15 studies used simulated CT data to 

train and test their NN approach, 14 studies used clinical CT data, and 2 studies used CT data of 

physical phantoms. In contrast, all 26 bone segmentation studies used clinical datasets to train and 

test the NN approaches, while surgical planning tasks were always performed based on simulated 

data. Details of the datasets used to train the NN approaches are provided in Figure 3. 

Training and testing of the NNs with clinical data was performed with a mean of 33 ± 42 CT 

volumes and 12 ± 16 CT volumes, respectively. The mean ratio between the amount of training and 
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Figure 2. Overview of the study selection process of the present study.

testing data was approximately 9:2. Furthermore, 13 of the 76 reviewed studies employed a leave-k-

out testing strategy to improve validation of the NNs. In this cross-validation strategy, the available 

data are split into k folds, where one fold is alternately used as testing data, and the remaining folds 

serve as training data for the NN. This process is repeated k times such that all folds have been used 

for testing.

Quantitative evaluation of the NNs’ performances for CT image reconstruction tasks was most 

commonly performed using the peak signal-to-noise ratio (PSNR) and the structural similarity 

index measure (SSIM) (Fig. 5a). The bone segmentation NNs were most commonly evaluated using 
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the dice similarity coefficient (DSC) (Fig. 5b). No consistency was observed in the performance 

metrics used to evaluate the surgical planning step (Fig. 5c). Moreover, 3 of the 11 surgical planning 

studies did not include quantitative performance evaluations.

In the following subsections we elaborate on the NN approaches that have been employed in 

each of the three steps of maxillofacial CAS. 

Figure 3. Most popular NN approaches in the maxillofacial CAS workflow over the past two decades. CAS, 

computer-assisted surgery; CNN, convolutional neural network; MLP, multilayer perceptron; NN, neural 

network; RNN, recurrent neural network.

Figure 4. The data sets that were used to train and test the NN approaches in the reviewed studies. NN,  

neural network.
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Figure 5. Analysis of the evaluation metrics used to quantify the performance of NN approaches in (a) CT image 

reconstruction, (b) bone segmentation and (c) surgical planning. DSC, dice similarity coefficient; RMSE, root 

meat-squared error; MSE, mean-squared error; PSNR, peak signal-to-noise ratio; SSIM, structural similarity 

index measure; STL, standard tessellation language.
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Table 1. Overview of the studies included in this review.

CAS step Year

CT imaging 

modality Anatomy

Neural network 

architecture Authors

CT image 

reconstruction

2005 Fan-beam Abdomen Radial 

basis‑function 

NN 

Hu [10]

2006 Parallel-beam Shepp-Logan phantom Radial 

basis‑function 

NN 

Guo [11]

2008 Parallel-beam Shepp-Logan phantom RNN Cierniak [12]

2008 Parallel-beam Shepp-Logan phantom RNN Cierniak [13]

2009 Fan-beam Shepp-Logan phantom RNN Cierniak [14]

2010 Parallel-beam Shepp-Logan phantom RNN Cierniak [15]

2010 Parallel-beam Shepp-Logan phantom RNN Cierniak [16]

2011 Parallel-beam;  

Fan-beam

Shepp-Logan phantom RNN Cierniak [17]

2012 Parallel-beam Shepp-Logan phantom RNN Cierniak and Lorent 

[18]

2016 Parallel-beam, 

Fan‑beam

Chest CNN Würfl et al. [19]

2017 Fan‑beam Shepp-Logan phantom, 

anthropomorphic 

phantom head

CNN Adler and Öktem 

[20]

2018 Parallel‑beam,

Fan‑beam

Ellipse phantom, 

Shepp-Logan phantom

Human phantoms

CNN Adler and Öktem 

[21]

2018 Multi-detector row Abdomen CNN Chen et al. [22]

2018 Multi-detector row Abdomen;

Chest;

Rat brain

CNN Gupta et al. [23]

2018 Multi-detector row Abdomen CNN Han et al. [24]

2018 Fan-beam Chest CNN Liang et al. [25]

2018 Cone‑beam Abdomen CNN Würfl et al. [26] 

2019 Fan‑beam Skull CNN Dong et al. [27]

2019 Parallel‑beam Chest CNN Fu and de Man [28]

2019 Multi-detector row Torso CNN He et al. [29]

2019 Multi-detector row Chest CNN Lee et al. [30]

2019 Fan-beam Skull GAN Li et al. [31]

2019 Multi-detector row Chest CNN Shen et al. [32]

2019 Fan-beam Abdomen CNN Wu et al. [33]

2019 - Shepp-Logan phantom CNN Zhang and Zuo [34]

2019 Cone-beam Chest CNN Zhang et al. [35]

2020 Fan-beam Prostate CNN Chen et al. [36]

2020 Translational CT Chest CNN Wang et al. [37]

2020 Parallel-beam Chest CNN Baguer et al. [38]

2020 Parallel-beam Chest CNN Ma et al. [39]
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Table 1. (continued)

CAS step Year

CT imaging 

modality Anatomy

Neural network 

architecture Authors

2020 Fan-beam;

Cone-beam

Chest CNN Wang et al. [40]

2020 Cone-beam Breast GAN Xie et al. [41]

Bone 

segmentation

2002 Multi-detector row Chest, Skull MLP Zhang and 

Valentino [42]

2008 Multi-detector row Phalanx MLP Gassman et al. [43]

2013 - Jaw, mouth, nose, eye, 

brain

MLP Kuo et al. [44]

2017 Multi-detector row  Femur CNN Chen et al. [45]

2017 - Mandible, Spinal cord CNN Ibragimov and  

Xing [46]

2017 Multi-detector row Femural head, bladder, 

intestine, colon

CNN Men et al. [47]

2018 Multi-detector row Whole body CNN Klein et al. [48]

2018 Multi-detector row Vertebrae CNN Lessman et al. [49]

2018 Multi-detector row Skull CNN Minnema et al. [50]

2018 - Vertebrae Deep-belief 

network

Qadri et al. [51]

2018 Multi-detector row Mandible CNN Yan et al. [52]

2018 Multi-detector row Vertebrae CNN Zhou et al. [53]

2019 - Vertebrae CNN Dutta et al. [54]

2019 - Teeth CNN Gou et al. [55]

2019 Multi-detector row Whole-body CNN Klein et al. [56]

2019 Multi-detector row Orbital bones CNN Lee et al. [57]

2019 Multi-detector row Vertebrae CNN Lessmann et al. [58]

2019 Cone-beam Mandible, teeth CNN Minnema et al. [4]

2019 Multi-detector row Vertebrae CNN Rehman et al. [59]

2019 Cone-beam Skull CNN Torosdagli et al. [60]

2019 - Vertebrae CNN Vania et al. [61]

2019 Multi-detector row Pelvic bones CNN Wang et al. [62]

2019 Micro-CT Teeth CNN Yazdani et al. [63]

2020 Cone-beam Teeth CNN Lee et al. [64]

2020 - Temporal bone CNN Li et al. [65]

2020 - Vertebrae CNN Yin et al. [66]

2020 Multi-detector row Whole-body CNN Noguchi et al. [67]

2020 Multi-detector row Vertebrae CNN Bae et al. [68]

2020 Multi-detector row Cochleae CNN Heutink et al. [69]

2020 Cone-beam Skull CNN Zhang et al. [70]

2020 - Vertebrae Cascaded CNN Xia et al. [71]

2020 Cone-beam Teeth CNN Chen et al. [72]

2020 Cone-beam Teeth CNN Rao et al. [73] 
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Table 1. (continued)

CAS step Year

CT imaging 

modality Anatomy

Neural network 

architecture Authors

Surgical 

planning

2000 - Skull MLP based 

on legendre 

polynomials

Hsu and Tseng [74]

2001 - Skull MLP based 

on legendre 

polynomials

Hsu and Tseng [75]

2001 Multi-detector row Radius Bernstein 

Basis function 

network

Knopf and A 

l-Naji [76]

2010 n.a. Femur MLP Hambli [77]

2012 n.a. Femur MLP Campoli et al. [78]

2012 n.a. Bone microstructure Meshing 

growing neural 

gas (MGNG)

Fischer and 

Holdstein [79]

2016 n.a. Femur MLP Chanda et al. [80]

2018 n.a. Dental implant MLP Roy et al. [81]

2019 n.a. Spinal implant MLP Biswas et al. [82]

2020 - Skull GAN Kodym et al. [83]

2020 - Mandible GAN Liang et al. [84]

NN: neural network; RNN: recurrent neural network; CNN: convolutional neural network; MLP: multi-layer 

perceptron; GAN: generative adversarial network; n.a.: not applicable; - : not specified

3.1.	 Image reconstruction

Historically, CT image reconstruction (Fig. 6) has been a notoriously difficult task, which aims to 

compute the density of objects or anatomical structures based on the attenuation of X-rays. To 

date, two different reconstruction methods have been predominantly employed in clinical settings: 

filtered backprojection (FBP) and iterative reconstruction (IR). FBP is an analytical method in which 

measured projection data are uniformly distributed across the CT scan with an angle that corresponds 

to the acquisition of the projection data. A filter is subsequently applied to reduce blurring in the CT 

scan. By using projection data acquired at multiple angles with respect to the patient, a 3D CT 

scan can be reconstructed. IR approaches start similar to the FBP in that they use the measured 

projection data to reconstruct an initial CT scan. Based on this initial scan, a forward operation is 

performed to create artificial projection data. The artificial projection data are then compared to 

the measured projection data, which are used to update the initial CT scan. The forward operation 

and the scan update are repeated until the quality of the CT scan is satisfactory or for a fixed number 

of iterations. To date, a wide variety of different IR algorithms have been developed, including 

the algebraic reconstruction technique (ART), the simultaneous iterative reconstruction technique 

(SIRT) and model-based iterative reconstruction (MBIR).

Over the last decade, NNs have opened up a wealth of opportunities in the field of CT image 

reconstruction, offering CT images with higher quality than with FBP, while requiring shorter 
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reconstruction times than current IR reconstruction approaches. One of the first efforts in 

developing NNs for medical CT image reconstruction can be traced back to 2005, when Hu et al 

proposed two different NN-based approaches [10]. The first approach aimed to reconstruct 2D 

CT images using a Radial Basis Function NN (RBF-NN), which is a similar to the classical MLP, but 

uses a radial basis function as non-linear activation function. The input of this RBF-NN consisted 

of CT projection data, and the desired target consisted of previously reconstructed CT scans. In 

the second approach, the RBF-NN was employed to iteratively estimate the intensities of the voxels 

in the CT scan. More specifically, an IR scheme was employed in which the RBF-NN was trained to 

update the voxel values in the CT scans. Although both RBF-NN-based approaches were initially used 

to reconstruct small 32 × 32 images with only 8–16 projection angles, image sizes were increased to 

128 × 128 in a later study by Guo et al [11].

In a series of publications between 2008 and 2012 [12–18], Cierniak et al developed multiple RNNs 

to iteratively reconstruct CT scans after using traditional backprojection to create an initial CT scan. 

The proposed RNNs were essentially used as learnable filters for the FBP reconstruction method, 

replacing the fixed filters in FBP [17]. Cierniak demonstrated that the proposed RNNs improved CT 

image quality compared to FBP. Moreover, it was shown that the proposed method was able to 

reconstruct projection data acquired from various CT scanning geometries such as fan-beam and 

parallel-beam (Fig. 6).

Although the aforementioned RBF-NN and RNNs initially demonstrated promising results, they 

have been rapidly surpassed by CNNs. CNNs have the ability of capturing spatially oriented patterns 

in imaging data, which makes them particularly suited to reconstruct CT scans. An example of such 

Figure 6. Schematic overview of the CT image reconstruction step. First, CT projection data are acquired with 

one of the four commonly used CT geometries (i.e., fan-beam, parallel-beam, cone-beam and multi-detector 

row). The acquired projection data are used to reconstruct a CT scan. This reconstruction step can be improved 

by training a NN.
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a CNN approach was proposed by Würfl et al., who demonstrated that the traditional FBP method 

can be expressed in terms of CNNs [19]. Their CNN consisted of a single convolutional layer to mimic 

the filtering of FBP, and a fully connected layer to learn the backprojection step. They found that 

the CNN achieved comparable results to traditional FBP while markedly reducing the computational 

complexity required to perform the reconstruction. In addition, they showed that their framework 

can be extended to mimic the Feldkamp David and Kress (FDK) algorithm that is commonly used to 

reconstruct CT scans acquired with the cone-beam geometry (Fig. 6) [26]. 

Another way of using CNNs for CT image reconstruction is to incorporate them within IR 

algorithms. For example, Adler and Öktem replaced forward operations of the iterative gradient 

descent reconstruction algorithm [20] and the primal-dual hybrid gradient algorithm [21] by 

partially trainable CNNs. In addition, various CNN approaches have been developed to improve 

reconstruction quality [34,36,37] and computational efficiency [33] of IR algorithms.

A different strategy was taken by Chen et al, who developed a CNN-based framework to find 

a direct mapping between CT projection data and reconstructed CT scans [22]. Their framework 

used 50 iteration-inspired layers that each consisted of three learned convolutional operations. 

This framework significantly outperformed state-of-the-art reconstruction approaches. Moreover, 

they showed that this approach can be effectively used on incomplete projection data, which is 

a common problem in clinical practice, since radiation dose often needs to be reduced in order to 

comply with the ‘as low as reasonably achievable’ (ALARA) principle. The CNN-based IR framework 

was further improved by Xie et al. [41], who implemented a learnable back-projection step that was 

previously fixed.

A different way of finding a mapping between projection data and reconstructed CT scans was 

developed by Fu and De Man [28]. However, instead of finding a direct mapping, they proposed 

a hierarchical CNN in which the difficult reconstruction problem was split up into multiple 

intermediate steps that can be easily learned. This approach does not only improve the quality of 

reconstructed CT scans, but also gives clinicians an insight into the intermediate steps learned by 

the CNN. Similarly, Wang et al [40], developed two coupled CNNs to convert sinograms into CT 

images. The first CNN takes sinograms as input and converts them to data that are better suitable 

for the FBP or FDK algorithms. The output of the FBP or FDK algorithms (in the image domain) is 

subsequently fed to the second CNN, which further improves the reconstructed image quality. Ma 

et al. [39] also aimed to reconstruct CT images directly from the projection data. However, instead 

of breaking down the reconstruction challenge into multiple steps, they applied a combination of 

fully connected layers and convolutional layers to reduce the memory space requirement. They 

showed that their proposed approach results in substantially better image quality than standard FBP.

Ever since it was introduced in 2015, the U-Net has become a popular CNN architecture for 

medical image analysis [85]. The U-Net consists of two convolutional paths. The downsampling 

path (i.e. encoder) creates a low-dimensional representation of the input data in order to capture 

local patterns. The upsampling path (i.e. decoder) subsequently captures global patterns through 

a series of upsampling steps. Both paths of the U-net are interconnected with skip-connections that 

allow the network to combine learned patterns at various scales. Applications of U-Nets for medical 

CT image reconstruction include the estimation of incomplete CT projection data (e.g. sparse-
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view and limited-angle CT) [27,37,38] and improving IR, specifically the projected gradient descent 

reconstruction algorithm, by replacing the forward projector with a U-Net [23]. Furthermore, 

variants of U-Net such as dual-frame and tight-frame U-Net have been proposed to reduce streaking 

and blurring artifacts in sparse-view CT scans during post-processing [24]. Finally, U-Net has also 

been employed to predict deformation vector fields used to reconstruct 4DCT images [35]. 

In summary, a wide variety of NN approaches have been proposed for CT image reconstruction 

(Table 1). In particular, CNNs have shown to be an incredibly interesting research topic with many 

new recent publications. Three CNN approaches were identified that are particularly interesting for 

the current maxillofacial CAS workflow. The first CNN approach aims to replace the computationally 

demanding forward operations within current IR methods [20,21]. This markedly reduces the time 

constraint of applying IR methods in the maxillofacial CAS workflow. The second interesting CNN 

approach identified in this study is capable of reconstructing CT scans from incomplete projection 

data [27,31,37]. Such approaches would enable clinicians to acquire high-quality CT scans of patients 

using low dose protocols. The third CNN approach replaces the total reconstruction process [22,28], 

which means that the CNN is trained to directly reconstruct CT scans from raw projection data. 

However, it must be noted that such fully learned reconstruction approaches are computationally 

expensive and require large amounts of annotated training data, which are not always available.

3.2.	 Image segmentation

Image segmentation refers to the task of labelling voxels of an image as a particular class (Fig. 7). 

In the context of maxillofacial surgery, this image segmentation step is typically used to distinguish 

bony structures from soft tissues or air. Although a large variety of statistical methods have been 

developed for bone segmentation, they usually require the intervention of a medical professional 

in order to produce an accurate output, mainly due to the lack of reliable Hounsfield units and 

the limited signal-to-noise ratio of CBCT scans. It is therefore desirable to automate this task as far as 

possible, thereby relieving the medical professional from this labor-intensive and time-consuming 

task, while also increasing the accuracy and consistency of the segmentation results. We therefore 

reviewed the NNs used to automate CT bone segmentation tasks.

Figure 7. Schematic representation of the bone segmentation task required for maxillofacial CAS. A NN can be 

trained to automatically perform this segmentation task.
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The first study describing the segmentation of bone in CT scans using NNs was published in 

2002 [42]. In this study, a hierarchy of MLPs was trained on small patches of head and chest CT 

scans. The trained MLPs subsequently classified the center pixels of the patches and combined all 

separate pixel classifications to create a segmented image. Although similar MLPs were adopted by 

Gassman et al. [43] (2008) and Kuo et al. [44] (2013) to segment the phalanges and the nasal septum, 

respectively, different input data were used to train the MLPs. Namely, Gassman et al provided 

spherical co-ordinates, probabilities and intensities of individual pixels as input for their MLP, whilst 

Kuo et al used single rows of CT scans.

Segmentation using NNs took a significant leap after the ground-breaking performance 

of a novel CNN architecture (AlexNet) developed by Krizhevsky et al. in 2012 [86]. Similar to 

the aforementioned MLPs, this CNN architecture was trained using a patch-based approach in which 

the CNN aimed to classify the center voxels of small image patches. Inspired by the performance 

of this patch-based CNN, researchers have shown that such CNNs can achieve similar and in some 

cases superior performances compared to state-of-the art statistical methods when segmenting 

the mandible [46,52], the spine [51,61] and the skull [50] in CT scans. Nevertheless, the clinical 

application of patch-based CNNs for segmentation has been limited since many redundant 

convolution operations are necessary to classify all image voxels, which significantly slows down 

training and increases segmentation times.

In order to overcome this challenge, Ronneberger et al. published a variation of the traditional 

CNN architecture, known as U-Net [85]. U-Net can directly provide a segmented image as output 

(i.e. semantic segmentation) which increases its computational efficiency compared to patch-

based CNNs. As a result, this U-Net architecture has ever since been applied for several CT bone 

segmentation tasks. For example, Klein et al. [48,56] and Noguchi et al. [67] applied U-net to 

segment bone in whole-body CT scans and reported that the U-Net performed significantly better 

than the standard segmentation procedure, i.e. global thresholding combined with morphological 

operations. Furthermore, U-Net was used to segment vertebrae [54,59,68,71], teeth [55,72], pelvic 

bones [62], orbital bones [57], cochleae [69] and cranial bones [70]. In a different study [45], a CNN 

architecture very similar to the U-Net, namely SegNet [87], was used to perform edge detection and 

multiscale segmentation of the femur in CT scans. Finally, Lessmann et al. extended the standard 

U-Net architecture in order to both segment and identify an a priori unknown number of vertebrae 

[49,58]. Their proposed architecture was able to automatically identify the individual vertebrae, 

whilst having comparable segmentation performance as the standard U-Net.

Since high segmentation performances have been achieved by U-net across a large number of 

studies, U-Net is currently considered the state-of-the-art for CT bone segmentation. Nevertheless, 

alternative CNN architectures for medical image segmentation have also been widely employed in 

the reviewed papers. For example, Men et al. proposed a deep dilated CNN (DDCNN), in which 

the first and last layers perform dilated convolutions in order to extract multiscale features [47]. 

Such a dilated convolution refers to the inflation of a convolution kernel while leaving sparse spaces 

between its elements. This dilation thus increases the receptive field of the kernel without increasing 

the number of model parameters. Torosdagli et al. [60] segmented the mandible using a fully 

convolutional DenseNet, which is comparable to U-Net, but uses dense blocks instead of regular 
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convolutional layers. These dense blocks comprise multiple densely connected convolutional 

layers, which means that each convolutional layer within the dense block is connected to all other 

layers in the block. Similarly, a UDS-Net [64] has been proposed, consisting of a U-Net with a dense 

block and spatial dropout, to segment teeth. Furthermore, 3D-DSD net has been developed which 

consists of a U-Net with a dense block and additional skip connections [65]. The use of dilated 

convolutions and dense connections was further exploited in the mixed-scale dense CNN (MS-D 

network) [88], which was used to segment the mandible in cone-beam CT scans [4]. In an MS-D 

network, each convolutional layer performs a dilated convolution and is densely connected to all 

other layers of the network. It was found that these properties allow the MS-D network to achieve 

comparable segmentation performances as U-Net, while using far fewer trainable parameters [4]. 

Finally, Zhou et al. developed the so-called N-Net, which is similar to U-Net but has an additional 

stream of downsampling layers [53], whereas Rao et al. modified the U-Net by replacing the normal 

convolutions with so-called Deep Bottleneck Architectures [73].

 In this section, different NN approaches used for bone segmentation in CT scans were reviewed. 

Similar to the NN approaches used for CT image reconstruction, bone segmentation seems to be 

increasingly performed using CNNs in favor of alternative NNs. The CNN approaches identified in 

this review can be roughly categorized into patch-based approaches and semantic segmentation 

approaches. The patch-based approaches allow extracting a large number of patches from relatively 

few CT scans, which facilitates CNN training. Semantic segmentation approaches, on the other 

hand, annotate each voxel of an image during a single forward pass through the CNN, which is 

typically far more computationally efficient than patch-based approaches. As a result, current state-

of-the-art CNN approaches usually perform semantic segmentation. Examples of such widely used 

CNN architectures are U-Net [85], ResNet [89] and MS-D network [88]. 

3.3.	 Surgical planning

The final step in the maxillofacial CAS workflow is surgical planning. This step typically involves 

a combination of computer-simulated bone reconstruction and subsequent designing of 

appropriate patient-specific implants. For example, a simple method to reconstruct fractured 

bones in the skull is to mirror the bony structures from the contralateral healthy side [90]. However, 

this technique is often constrained to small defects on one side of the skull. For larger defects, 

a complex procedure involving various 3D-modelling software packages is required. The success of 

NNs in image reconstruction and image segmentation calls for the application of similar techniques 

during surgical planning and implant design. In this section, we therefore review different NN 

approaches that have been applied for surgical planning.

An interesting area for automated surgical planning is the reconstruction of skull plates 

because of the simplicity of the local anatomical geometry. Already in 2001, efforts were made to 

automatically design skull implants [74,75]. The authors of these papers used a single-layer MLP 

in order to reconstruct cranial bone from CT images of patients with skull defects. In order to 

optimize training of the MLP, an approach relying on orthogonal functions (Legendre polynomials) 

was employed. The presented MLP was able to significantly speed up and improve the design of 

skull implants. However, while mathematically interesting, this particular approach is unlikely to 
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generalize to larger defects on the side of the skull, since Legendre polynomials are insufficient to 

correctly approximate such complex defects. A similar approach was proposed by Knopf and Al-Naji 

[76], which also approximates anatomical features using an MLP with a single layer of polynomial 

functions, specifically Bernstein polynomials. After being trained on a set of segmented CT slices, 

the network was able to reproduce the anatomical structure of healthy bone. The main advantage 

of this approach is that the output of the MLP is in the shape of curves that describe the bony 

structures, which can be easily loaded into CAD software. Nevertheless, it must be noted that most 

approaches based on curve fitting are currently restricted to the neurocranium where the geometry 

of the skull can be reasonably approximated by smooth curves.

A different way of employing NNs for surgical planning is to optimize parametrized implant 

designs. The advantage of working with parametrized designs is that the NNs do not require 

imaging data. In addition, since implant designs can often be described using a few parameters, 

relatively simple NN architectures can be used to optimize the parametrization of the design. This 

approach was, e.g. taken by Chanda et al. [80], who optimized parameterized hip implants based 

on the effects of initial micromotion, stress shielding, and interface stress. Using a combination 

of a single-hidden-layer MLP, a genetic algorithm and finite element analysis (FEA), the authors 

deduced that the standard implant design can be significantly improved. A similar combination of 

an MLP, a genetic algorithm and FEA was also used in a different study in order to find the best 

combination of material properties and geometry to generate patient-specific dental molar implants 

[81]. This approach was also used by Biswas et al. [82], who optimized the design of patient-specific 

spine implants based on the bone condition, body weight and implant diameter.

Another well-attended problem in surgical planning is to predict how bone adapts to different 

loads. This bone adaptation can be caused by surgical implants and may lead to complications 

after surgery [91]. To date, bone adaptation prediction has been commonly performed using FEA. 

However, researchers recently found that a combination of the well-established FEA method and an 

MLP can significantly speed up the computations [77]. The inverse problem has also been studied, 

specifically the estimation of load parameters for a given bone porosity inferred from CT images. 

For example, Campoli et al. [78] showed how a single-layer MLP can solve this inverse problem and 

compute the load for a femur. The network was specific to a single femur and was trained using 

simulated data. After the introduction of noise to the training data, the network was still able to 

successfully estimate the load parameters for the femur.

An interesting NN approach that does not rely on the geometric properties of bone was 

employed by Morais et al. [92]. They trained a CNN, specifically a deep convolutional autoencoder, 

to reconstruct fractured or missing parts of the skull. This autoencoder learned a representation of 

a healthy skull and was able to subsequently reconstruct a portion of the skull that was artificially 

removed. However, the accuracy and applicability of this deep learning model to high‑resolution 

data remains challenging due to the computing power necessary for training and validation. 

Moreover, the proposed method was only validated on MRI data and not yet on CT data.

A relatively new approach towards reconstructing tissue morphologies is to apply generative 

adversarial networks (GANs). GANs consist of two networks: an generative network for generating 

new, fictive images based on input images, and a discriminator for distinguishing the generated 
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images from real images. In the context of morphology reconstruction, a GAN can be used to 

generate images of healthy tissues based on images of fractured or diseased tissues. The generated 

images can then be hardly, if not at all, distinguished from real images of healthy tissues. From 

a clinical perspective, such generated healthy images can be extremely useful as they provide 

a surgeon a view of what the result should resemble. Furthermore, generating healthy images can 

be particularly helpful when constructing patient-specific implants. An example of a GAN applied in 

such a setting can be found in the study by Liang et al. [84], who developed a GAN to reconstruct 

the morphology of the mandible based on CT images of patients suffering from ameloblastoma or 

gingival cancer. Similarly, Kodym et al. [83] used a GAN to reconstruct the shape of defective skulls. 

Even though interesting approaches have been developed, relatively few studies have 

described NNs for surgical planning (Table 1). The majority of surgical planning studies included in 

this review implemented MLPs for applications such as dental implant design [80] and prediction of 

bone adaptation [77,78]. A possible explanation for the relatively few studies describing NN-based 

surgical planning might be that it is extremely difficult to develop a single network to account for all 

variations that clinicians face during surgical planning. For example, there are numerous possibilities 

of designing implants or surgical tools, and choosing an adequate design heavily depends 

on the available software tools on the market, the type of imaging data used, and the personal 

preferences of medical engineers. As a consequence, it is almost impossible to effectively train 

a NN to design implants if no constraints are imposed. Although a few studies solved this problem 

by using a parametrized implant design to reduce the degrees of freedom [80,81], this leads to 

more generic and less patient-specific implants. Hence, automating personalized surgical planning 

and implant design using NNs remains difficult. Nevertheless, the field is still currently active, as 

demonstrated by the recent AutoImplant Challenge [93] that was created to motivate participants 

to develop automated methods for cranial implant design.

4. 	 C U R R E N T  C H A L L E N G E S  A N D  F U T U R E  R E S E A R C H

In order to further develop and validate NN approaches for the three main steps of the maxillofacial 

CAS workflow, challenges remain that need to be overcome. One of these challenges is 

the quantitative performance evaluation. To date, the SSIM and MSE have been commonly used 

to assess image quality in the CT image reconstruction step, whereas the DSC is commonly used to 

assess segmentation performances (Fig. 4). These generic metrics, however, do not always represent 

clinical relevance. For example, maxillofacial surgeons often assess the surface of the bony structures 

in order to create a treatment plan and design implants. Therefore, surface-based performance 

metrics might be preferred over the generic metrics. One possible way of evaluating segmentation 

performance would be to convert segmented CT scans into virtual 3D models and subsequently 

calculating geometrical distances between a gold-standard virtual model and the NN-based virtual 

models [94]. This approach enables the quantification of the surface quality of bony structures, and 

also allows the visualization and interpretation of the differences between the two virtual models.

Another well-known limitation of most NN approaches is the need for large amounts of paired 

training data, i.e. input and target [95]. Although an extremely large number of medical images are 
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acquired on a daily basis that can be used as input to train a NN, they commonly lack appropriate 

annotations. Annotating such medical images requires a high level of domain-specific expertise, in 

contrast to natural images that can be easily annotated through crowdsourcing. In order to avoid 

the challenge of acquiring annotated target images, an interesting research direction might be to 

develop semi- and unsupervised NN training approaches, which do not depend on annotated data 

sets to learn.

To date, the development of NN approaches has been mainly performed in academic settings. 

Although many different NNs have shown to improve the efficiency, accuracy and consistency 

in which clinical tasks can be performed, none of these NN approaches has, to the best of our 

knowledge, been approved for maxillofacial CAS by the United States Food & Drug Administration. 

As a consequence, the application of NNs in routine clinical tasks remains very limited. In order 

to allow for large-scale use of NNs in clinical settings, additional research is necessary that focus 

on the robustness of NNs when faced with large anatomical variations and different imaging 

characteristics. For example, two recent studies have already shown that a single CNN is able to 

accurately segment CT scans acquired using various CT scanners [50,68]. 

The reconstruction of CT scans in the maxillofacial CAS workflow is typically optimized for 

visual interpretation by clinicians. This optimization is to be expected since visual assessment is 

often fundamental to establish correct diagnoses. However, a CT scan optimized for human 

interpretation might not be the ideal input for CNNs to perform the subsequent segmentation and 

surgical planning tasks. Namely, CNNs solely extract patterns from the CT scans without taking visual 

aspects into account. A possible way of improving the quality of the CAS workflow may therefore be 

to jointly train two CNNs to simultaneously reconstruct and segment a CT scan. Such joint training 

approaches have already shown promising results in lung nodule detection [96], and may open up 

promising avenues when used in the maxillofacial CAS workflow.

One of the limitations that was encountered in the reviewed publications is that the heterogeneity 

of the data used to train the NNs makes it particularly challenging to draw generic conclusions. 

NN models have been trained on CT images of various different anatomical regions or phantoms 

that have been acquired using a plethora of different scanners, or through simulation. In order to 

validate a methodology, benchmark data sets should be developed which would enable a better 

comparison between the NN approaches. Furthermore, any work performed on simulated data 

and/or phantoms should be validated on clinical data, as it is challenging to assess the clinical 

applicability of NN approaches that have been solely validated on synthetic data.

Finally, it must be noted that research on artificial intelligence, and deep learning in particular, 

is evolving at an incredible rate due to the unprecedented interest and resource investment these 

fields. As a consequence, the state-of-the-art on this topic will naturally evolve rapidly. Nevertheless, 

this does not mean that a review cannot be useful. In fact, literature reviews may be arguably even 

more important when considering such rapidly evolving topics, as they help to identify bottlenecks, 

and to suggest new lines of research to advance the field.
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5 . 	 C O N C L U S I O N

This scoping review describes different NN approaches used in the three main steps of 

the maxillofacial CAS workflow, i.e. CT image reconstruction, bone segmentation and surgical 

planning. In recent years, CNNs have rapidly become the most popular NN approach for CT 

image reconstruction and image segmentation, whereas MLPs remain the most common 

approach in surgical planning. Although CT image reconstruction and bone segmentation 

have been widely explored fields of research, additional research is required on the application 

of NNs for surgical planning. In order to reach the full potential of NNs for maxillofacial CAS, 

future research should focus on overcoming the challenges addressed in this review.
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Computer‑assisted surgery (CAS) has become an integral part of personalized medicine [1]. However, 

the current CAS process remains laborious and time‑consuming and requiring a plethora of manual 

steps. These steps often go hand in hand with subjectivity and fatigue among medical engineers 

[2], which can lead to inaccuracies in the final treatment plan. One possible way of circumventing 

such tedious manual tasks is by using deep learning algorithms. In particular, convolutional neural 

networks (CNNs) offer new possibilities for automating the current CAS workflow. This thesis 

focused on optimising the current CAS workflow by developing CNNs for two main applications: 

computed tomography (CT) image segmentation and image  artifact correction. The following 

sections will discuss these two applications. Furthermore, in the final section, current challenges 

and future research perspectives will be discussed.

1 . 	 C T  I M AG E  S E G M E N TAT I O N

One of the most important tasks in the maxillofacial CAS workflow that would benefit from CNNs 

is medical image segmentation. The major advantage of using CNNs for segmentation tasks is that 

they are capable of automatically segmenting medical scans by learning patterns between the gray-

values of voxels. Through these learned patterns, CNNs are able to separate various anatomical 

structures of interest. In order to demonstrate the potential of applying CNNs for medical image 

segmentation in maxillofacial CAS, a feasibility study was conducted in Chapter 2. In this study, a CNN 

was trained using clinical CT scans from patients who had undergone skull surgery. The CT scans 

were acquired using various scanner types and imaging protocols. Interestingly, the CT scanner type 

and imaging protocol did not seem to affect the CNN’s segmentation performances. This finding 

is likely due to the fact that the developed CNN was able to automatically learn the characteristic 

features of the bony structures in multiple CT scans. This chapter demonstrates that CNNs are 

capable of correctly segmenting bony structures in images acquired from a large variety of different 

CT scanners currently on the market.

In Chapter 2, the CNN segmentation performance was validated on a single region of interest, 

namely bone. However, in clinical settings maxillofacial surgeons commonly need to assess multiple 

anatomical regions of interest. Thus, simultaneous segmentation of multiple regions of interest, 

also referred to as multi-class segmentation, is a challenging task, as CNNs need to learn complex 

patterns and features corresponding to each region of interest. At this stage of the study, it was 

unclear whether a single CNN was able to accurately segment multiple relevant regions of interest. 

Based on the questions that arose in Chapter 2, a new study was initiated (Chapter  3). In 

this study, a CNN was developed and implemented to segment CBCT scans into three regions of 

interest: 1) the jaw (i.e., mandible and maxilla), 2) the teeth and 3) background. For this purpose, 

a mixed-scale dense convolutional neural network (MS‑D network) [3] was developed. The MS‑D 

network was trained to segment the three aforementioned regions of interest, and the results 

were compared to an MS-D network that was trained on two regions of interest (i.e., jaw or teeth, 

and background). Interestingly, both MS-D networks (i.e., multi-class segmentation vs. binary 

segmentation) achieved statistically equivalent (p<0.05) segmentation performances. The findings 

of this study are, however, different than those reported by Saood and Hatem [4]. In their study, they 
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reported worse segmentation performances when simultaneously segmenting multiple regions of 

interest in the lungs of patients with COVID‑19, compared to consecutively segmenting a single 

region of interest. A possible explanation for these contradicting findings might be that structures 

in the lungs share many similar features and patterns, making it extremely difficult for a CNN to 

simultaneously segment these structures compared to the jaw and the maxilla. The performance 

of multi-class segmentation approaches therefore seems to depend on the properties of 

the imaging data at hand and the anatomy of interest. In order to establish a better understanding 

of the influence of the anatomical region of interest, future studies should focus on comparing 

multi-class segmentation to binary segmentation for a wide range of different anatomies. 

Another open research question in the field of CT image segmentation is which training strategy 

is best suited to train a CNN. To date, axial slices have been commonly used to train CNNs since 

these slices typically offer the highest in-plane resolution [5]. However, evidence in the current 

literature suggests that axial slices do not always yield the highest segmentation performances 

[6–13]. Although a wide variety of different training strategies have been proposed in recent years, 

it remains unclear which of these training strategies offers the best segmentation performance for 

maxillofacial CAS. In order to answer this question, a new study was conducted (Chapter 4). 

In Chapter 4, eight different CNN training strategies were quantitatively compared and evaluated 

using two different CNN architectures (MS‑D network and U-Net). The eight training strategies used 

in this study can be divided into 2D strategies, augmented 2D strategies, and 3D strategies. CNNs 

trained using 2D strategies aim to segment single 2D slices (e.g., axial, sagittal, coronal), whereas 

CNNs trained using augmented 2D strategies generally segment a combination of 2D cross‑sections. 

3D strategies are employed to segment an entire 3D volume or a 3D patch. The results of this study 

demonstrated that one of the augmented 2D strategies performed best. The best performing 

augmented 2D strategy used a CNN that was independently trained three times, either on axial 

slices, sagittal slices, or coronal slices. The segmentation results of the three CNNs trained on axial, 

sagittal, and coronal slices, were subsequently combined through majority voting. However, this 

majority voting strategy can be computationally demanding because it requires a CNN to be trained 

three times. If applying this strategy is infeasible, then it is recommended to train a single CNN 

on 2D slices that are perpendicular to the predominant orientation of the anatomical structure of 

interest. Finally, it is interesting to note that the training strategies evaluated in this study affected 

the CNN’s segmentation performance more than the chosen architectures (i.e., MS-D network vs. 

U-Net), which highlights the importance of employing an optimal training strategy [14]. 

2 . 	 I M AG E  A RT I FAC T  C O R R E C T I O N

The aforementioned studies on CT image segmentation demonstrated the potential of CNNs 

to segment bony structures in (CB)CT scans (Chapters 2, 3) and helped  gain novel insights into 

different CNN training strategies (Chapter 4). However, each of these studies were conducted using 

high‑quality CT scans, which are not always available in clinical settings. More specifically, (CB)CT 

scans are often affected by imaging artifacts, which can impair the image processing steps required 

in the CAS workflow. Such imaging artifacts are caused by disparities between the measured (CB)
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CT projection data and the underlying mathematical assumptions of the image reconstruction 

process. This can lead to distortions in the shape and intensity of the anatomical regions of 

interest. Correction of such artifacts is paramount to ensure the overall quality of the maxillofacial  

CAS workflow. 

 One possible approach to overcome this challenge is to train a CNN to segment CT scans 

affected by artifacts. In Chapter 5, a feasibility study was initiated to assess whether CNNs  are 

capable of segmenting such artifact-affected CBCT scans. In this study, three different CNNs 

(i.e., MS-D network, U-Net and ResNet) were trained to segment bony structures in CBCT scans 

that were heavily affected by metal artifacts. Interestingly all three CNNs developed in this study 

outperformed a snake evolution segmentation algorithm that is widely-used in clinical settings. 

These findings suggest that CNNs are indeed capable of learning the characteristic patterns of 

metal artifacts. Moreover, the CNNs were able to correctly distinguish relevant bony structures 

from high‑density objects such as retainers and amalgam fillings. The results described in  

Chapter 5 are also in agreement with previous studies that have shown that CNNs can accurately 

segment the prostate [15], the mandible[16], and the teeth [17] in artifact-affected (CB)CT scans. 

These insights thus demonstrate that CNNs do not only offer accurate segmentations of high‑quality 

CBCT scans, but are also capable of processing artifact‑affected scans. 

Although the segmentation-based artifact correction approach described in Chapter 5 offered 

good results, it is not applicable to all scenarios in the maxillofacial CAS workflow.  More specifically, 

maxillofacial surgeons regularly need to inspect the native (CB)CT scans to establish accurate 

diagnoses. In such cases, one would ideally want to remove the artifacts from the artifact‑affected 

(CB)CT scans, instead of segmenting the scans. To date, two main CNN-based approaches have 

been proposed to perform such CT artifact correction tasks: image-domain approaches and 

projection‑domain approaches. In image‑domain approaches, a CNN is trained to convert 

low‑quality scans into high‑quality scans. Image‑domain approaches are thus generally applied 

as post‑processing methods to improve the quality of reconstructed (CB)CT scans. In contrast, 

projection-domain approaches aim to correct the raw (CB)CT projection data. This requires an 

in-depth understanding of the CT reconstruction process, but can potentially lead to highly 

accurate artifact correction. Both CNN-based artifact correction approaches have shown promising 

performances for various tasks, including metal artifact correction [18–23] and noise reduction [24].  

Even though most imaging artifacts can be accurately removed using current artifact correction 

approaches, the high cone-angle artifact remains a challenge for current CNNs. This imaging artifact 

is inherent to the circular CBCT imaging modality, and is characterized by streaks and blurring in 

the peripheral regions of the CBCT scans. This means that the severity of high cone‑angle artifacts 

differs greatly between CBCT slices, which makes it difficult for CNNs to learn a generalized way of 

removing the artifacts. 

One possibility for effectively training a CNN to correct high cone-angle artifacts would be to 

employ the symmetry-aware deep learning workflow described in Chapter 6. In this study, a CNN 

was trained using radially sampled 2D CBCT slices instead of orthogonal 2D slices (i.e., axial, sagittal 

or coronal). Since radially sampled slices exhibit much less variation in cone-angle artifacts than 

orthogonal 2D slices, CNN training can be facilitated. The results of Chapter 6 confirm the hypothesis 
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that training a CNN using radial CBCT slices improves its artifact correction performance. In 

addition, the proposed radial slicing approach resulted in markedly fewer residual artifacts than 

the CNNs trained on axial slices. The insights gained in Chapter 6 emphasize the importance of 

tailoring the CNN training process to the task at hand. In fact, according to the results presented 

by Isensee et al. [14], non-architectural model choices can have a stronger influence on the CNN’s 

performance than architectural changes. These findings will hopefully inspire fellow researchers 

to carefully consider the training process when applying CNNs to automate the image processing 

tasks of the maxillofacial CAS workflow.

3 . 	 C U R R E N T  C H A L L E N G E S  A N D  F U T U R E  P E R S P E C T I V E S

The results of this thesis demonstrate that CNNs are promising algorithms for the automation 

of the maxillofacial CAS workflow. In particular the CT image segmentation and image artifact 

correction steps can benefit from CNNs. Nevertheless, several challenges still need to be overcome 

in order to translate the promising results into medically certified products that can be incorporated 

in the maxillofacial CAS workflow. These challenges are discussed in the literature review  

of Chapter 7. 

One of the main problems observed in Chapter 7 was that the current CAS workflow lacks 

cohesiveness when it comes to the different tasks that have to be performed. Each task is performed 

independently from other tasks in the workflow, which can lead to sub‑optimal outcomes. For 

instance, the acquisition and reconstruction of (CB)CT scans is optimized for visual inspection by 

clinicians, but not for the subsequent image processing steps required in CAS. Similarly, image 

processing software packages are not optimized for surgical planning. A potential solution to this 

particular problem may be to jointly train CNNs to perform all tasks in the maxillofacial CAS workflow. 

In such joint training approaches, multiple CNNs are simultaneously trained towards the end-goal of 

the workflow (e.g., adequate surgical planning), instead of solely focussing on specific tasks. Joint 

training approaches have already shown promising results for lung nodule detection [25], and may 

also open up new avenues for the maxillofacial CAS workflow. 

Another trend observed in Chapter 7 is that the majority of studies on deep learning‑based image 

processing methods have focused on developing novel CNN architectures, instead of evaluating 

their reliability. Assessing the reliability of CNNs is of the utmost importance in clinical settings, 

as CNNs need to perform well on imaging datasets acquired from both different scanning devices 

and patients. I therefore strongly believe that future research should focus on the reproducibility 

and reliability of CNNs. This includes performing studies on the reproducibility of the CNN training 

process, re-training known CNN architectures on new imaging datasets, and conducting multi-

centre studies using datasets acquired from multiple scanning devices or patient populations. In 

addition to investigating the reproducibility of CNNs, prospective studies should also be performed 

where CNNs are compared to standard clinical segmentation methods. Such studies will help to 

explore the reliability of CNNs in a wide variety of scenarios in the maxillofacial CAS workflow and 

facilitate the adoption of the technology in clinical routine. 
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A general problem with CNNs that affects their applicability in the current maxillofacial CAS 

workflow is the availability of high-quality datasets. More specifically, the majority of current CNN 

approaches require paired training images (i.e., input images and corresponding target images), 

which are difficult to acquire in clinical settings. A possible solution to this problem is to apply data 

augmentation in order to increase the number of available training images. Such data augmentation 

techniques commonly consist of simple operations that are applied on training images, such as 

random rotations, random erasing, cropping, geometric transformations and kernel filters [26]. 

It is also possible, however, to employ deep learning to generate training images. For example, 

generative adversarial networks (GANs) [27] are capable of generating artificial target data from 

input images. This deep learning-based data augmentation approach has already been shown to 

be successful in various clinical and non-clinical image processing tasks [26, 28, 29], and might offer 

promising avenues for maxillofacial CAS.

Finally, there remains a mystery behind the CNNs’ reasoning and decision-making process. 

CNNs are currently often perceived as black boxes. Demystifying the CNN’s decision‑making 

process is essential, especially if the CNN’s output contradicts the prediction of a medical specialist. 

Moreover, it may help engineers to correct the errors made by CNNs. To date, only a paucity of 

studies have tried to interpret the reasoning of CNNs by visualizing their intermediate layers [30, 

31]. This interpretation remains extremely difficult and dataset dependent. Additional research is 

therefore still necessary to interpret the reasoning of CNNs.

In conclusion, CNNs have proven to be capable of automating the image processing step in 

the CAS workflow. The studies and results presented in this thesis clearly show the potential of 

CNNs and demonstrate that they can outperform the traditional image processing methods 

currently used in maxillofacial CAS. However, when applying new methods, such as CNNs, in clinical 

settings, it is not only necessary that high performances are achieved but also that the advantages 

and limitations of the method at hand are fully understood. Future studies should therefore shift 

their focus from improving CNN performances towards improving the robustness of CNNs and fully 

understanding their decision-making processes. This understanding will help to incorporate CNNs 

in the maxillofacial CAS workflow, and reduce the workload among medical specialists.
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S U M M A RY

Computer-assisted surgery (CAS) is a novel treatment modality that allows clinicians to create 

personalized treatment plans and virtually design implants, surgical guides, and radiotherapy 

boluses. However, even though CAS is a powerful means to optimize surgery, it currently requires 

a lot of tedious and time-consuming manual work by experienced medical engineers to ensure 

the quality of the CAS workflow. This thesis therefore focuses on developing artificial intelligence 

algorithms, specifically convolutional neural networks (CNNs), to automate two main image 

processing tasks required in maxillofacial CAS: CT image segmentation and computed tomography 

(CT) artifact correction.    

Chapter 2 describes a CNN approach to segment bony structures in 20 different CT scans. All CT 

were acquired from patients that had previously undergone craniotomy, thus posing a significant 

challenge for the CNN to correctly recognize the pathological shape of the bones. In addition, 

the CT scans were acquired using different CT scanners and imaging protocols in order to represent 

the variability that is commonly found amongst clinical CT datasets. Even though this segmentation 

tasks was validated on a challenging dataset, only two regions of interest (i.e., bone or background) 

were segmented. In order to demonstrate the ability of CNN to take more regions into account, 

a CNN was developed in Chapter 3 to segment cone‑beam computed tomography (CBCT) scans 

into the jaw, the teeth and background.   

To date, many different training strategies have been proposed in literature to train CNNs 

on medical images. However, it remains unclear which strategy yields the best segmentation 

performances. To elucidate on this topic, eight different CNN training strategies were evaluated and 

compared in Chapter 4. The CNNs described in this chapter were trained to segment anatomical 

structures in simulated and experimental cone-beam CT scans. These experiments demonstrated 

that the best strategy is generally to train three separate CNN and combine their segmentation 

results through majority voting. 

In Chapter 5, an approach is described to deal with strong metal artifacts in CBCT scans during 

the image segmentation step required during CAS. In particular, a mixed-scale dense convolutional 

neural network (MS-D network) was implemented to segment the bony structures of the mandible 

and the maxilla. The MS-D network described in this chapter clearly outperformed a widely-

used clinical segmentation method (i.e., snake evolution), and produced comparable results to 

alternative deep learning benchmarks. 

A novel symmetry-aware deep learning approach is proposed in Chapter 6 to reduce high cone-

angle artifacts in CB CT images. In this approach, a CNN was trained using radial cone‑beam CT 

slices to exploit the symmetry of high cone-angle artifacts. This allowed training a CNN to reduce 

the complex 3D cone‑angle artifacts using only 2D slices as input. In this chapter, it is demonstrated 

that this symmetry-aware dimensionality reduction improves the performance and robustness of 

CNNs when reducing high cone‑angle artifacts in cone‑beam CT scans. 

Deep learning, and specifically CNNs, have found remarkable successes in many different image 

processing tasks. This success is especially emphasized by the rapidly increasing number of studies 

that have been published in recent years. However, because of the high number of studies, it has 
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become a difficult task to keep up with all relevant developments. Therefore, the goal of Chapter 7 was 

to review all studies that have been published in which neural network approaches were developed 

for at least one of following three specific tasks of the CAS workflow: CT image reconstruction, bone 

segmentation, and surgical planning. Although various neural network approaches were identified, 

the majority of studies (66%) applied CNNs. Interestingly, all of these CNNs were published from 

2016 onwards, indicating the rapid paradigm shift this field has undergone. Nevertheless, much 

research is still required to make deep learning an integral part of the CAS workflow. Even though 

deep learning has been increasingly used for CT image reconstruction and segmentation, its 

application for surgical planning remains in its infancy. 

In conclusion, this thesis contributes to enhance the understanding of CNN approaches for 

medical image processing. Nevertheless, many interesting challenges and questions remain to 

incorporate CNN’s as an integral part of the maxillofacial CAS routine. I therefore hope that this 

thesis will inspire fellow researchers to take on these exciting challenges. 
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S A M E N VAT T I N G

Computerondersteunde chirurgie (CAS) is een nieuwe vorm van behandeling die clinici 

de mogelijkheid geeft om gepersonaliseerde behandelplannen te creëren en om implantaten, 

chirurgische mallen en radiotherapiebolussen virtueel te ontwerpen. Hoewel CAS een effectieve 

manier is om operaties te optimaliseren, is er op dit moment nog veel langdradig en tijdrovend werk 

nodig door ervaren medische ingenieurs om de kwaliteit van de CAS workflow te waarborgen. Deze 

thesis richt zich daarom op het ontwikkelen van kunstmatige intelligentie algoritmes, met name 

convolutionele neurale netwerken (CNN�s), om twee veelvoorkomende beeldverwerkingstaken 

uit de maxilofaciale CAS workflow te automatiseren: medische beeldsegmentatie en computer 

tomografie (CT) artefactreductie.

Hoofdstuk 2 beschrijft een CNN methode om botstructuren in 20 verschillende computer 

tomografie (CT) beelden te segmenteren. Alle CT beelden werden gemaakt van patiënten 

die in een eerder stadium craniotomie hadden ondergaan. Dit zorgde voor een aanzienlijke 

uitdaging voor het CNN om de contouren van de pathologische botstructuren op de juiste 

manier te herkennen. Bovendien waren de beelden verkregen met verschillende CT scanners 

en beeldvormingsprotocollen om de variabiliteit van typische klinische datasets na te bootsen. 

Echter, hoewel deze segmentatietaak op een uitdagende dataset was gevalideerd, werden alleen 

2 verschillende relevante anatomische regio�s gesegmenteerd (namelijk bot en achtergrond). Om 

aan te tonen dat CNN�s ook meerdere anatomische regio�s kunnen segmenteren, werd een CNN 

ontwikkeld in Hoofdstuk 3 om de kaak, tanden en achtergrond te segmenteren in  cone-beam 

computer tomografie (CBCT) beelden.  

Tot op heden zijn er veel verschillende trainingsstrategieën gepubliceerd in de literatuur 

voor het trainen van CNN's op medische beelden. Het is echter nog onduidelijk welke strategie 

de beste segmentatieprestaties oplevert. Om dit onderwerp verder te bestuderen, werden er  acht 

verschillende CNN training strategieën geëvalueerd en vergeleken in Hoofdstuk 4. De CNN’s die 

beschreven zijn in dit hoofdstuk werden getraind om anatomische structuren te segmenteren in 

zowel gesimuleerde als experimentele cone-beam CT beelden. Deze experimenten toonden aan 

dat de beste training was om drie CNN’s onafhankelijk te trainen en de resultaten te combineren. 

In Hoofdstuk 5 is een aanpak beschreven om met sterke metaalartefacten om te kunnen gaan 

tijdens de segmentatietaak. Om specifiek te zijn, was er een gemengde‑schaal dichtgebonden 

convolutioneel neuraal netwerk (MS‑D  netwerk) geïmplementeerd om botstructuren van 

de maxilla en de mandibula te segmenteren Het MS-D netwerk dat beschreven is in dit hoofdstuk 

presteerde aanzienlijk beter dan een veelgebruikte klinische segmentatie methode en produceerde 

vergelijkbare resultaten met alternatieve deep learning benchmarks.

Een nieuwe deep learning methode werd ontwikkeld in Hoofdstuk 6 om grote cone hoek 

artefacten te verminderen in CBCT beelden. Bij deze aanpak was een CNN getraind met radiale 

cone-beam doorsnedes zodat de symmetrie van de cone hoek artefacten uitgebuit kan worden. 

Dit zorgde ervoor dat het CNN getraind kon worden om de complexe 3D artefacten te verminderen 

terwijl alleen 2D doorsnedes werden gebruikt als input. In dit hoofdstuk wordt aangetoond dat 
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deze symmetriebewuste dimensionaliteitreductie de prestaties en de robuustheid van CNN’s sterk 

verbetert bij het verwijderen van cone hoek artefacten in CBCT beelden.

Deep learning en met name CNN’s zijn erg succesvol geweest bij het uitvoeren van 

verschillende beeldbewerkingstaken. Dit succes wordt vooral benadrukt door het grote aantal 

studies dat de afgelopen jaren is gepubliceerd. Vanwege dit grote aantal studies is het echter een 

moeilijke taak geworden om bij te blijven met alle relevante ontwikkelen binnen dit vakgebied. 

Daarom was het doel van Hoofdstuk 7 om 62 verschillende studies te evalueren waarin neurale 

netwerken zijn ontwikkeld voor ten minste één van de volgende drie taken in de CAS workflow: 

CT beeldreconstructie, botsegmentatie en chirurgische planning. Hoewel verschillende neurale 

netwerk methoden waren geïdentificeerd, werden er in de meerderheid van de studies (66%) CNN�s 

toegepast. Interessant was dat al deze CNN's werden gepubliceerd in de periode vanaf 2016 tot 

heden, wat aangeeft wat aangeeft wat voor revolutie het vakgebied heeft ondergaan. Toch is er nog 

veel onderzoek nodig om de CAS workflow volledig te automatiseren met deep learning. Hoewel 

CT beeldreconstructie en botsegmentatie inmiddels veelvuldig is bestudeerd, staat chirurgische 

planning met deep learning namelijk nog in de kinderschoenen. 

Tot slot draagt deze thesis bij aan het verbeteren van het inzicht om CNN’s toe te passen op 

medische beeldbewerkingstaken. Desalniettemin blijven er veel interessante uitdagingen en 

vraagstukken om CNN’s te kunnen integreren in de maxillofaciale CAS routine. Ik hoop daarom dat 

deze thesis mede-onderzoekers zal inspireren om deze boeiende uitdagingen aan te gaan.
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